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a b s t r a c t 

We present a method for speeding up equilibrium simulations of liquid crystals for two related models that are 
degenerate with respect to defects: the Ericksen model and the uniaxially constrained Landau-de Gennes model. 
The degeneracy induces a non-linear/non-smooth coupling between the two order parameters in both models 
that makes the discrete problems very stiff to solve. The technique described in this paper uses an alternating 
Schwarz domain decomposition method that isolates the degenerate region and alleviates some of the stiffness, 
and is easy to implement. We present numerical results illustrating the speed-up and how it is affected by the 
size of the sub-domains and the number of sub-iterations used within the degenerate region. 

1

 

t  

p  

p  

[  

a  

n  

n  

c  

i  

f  

p
 

p  

o  

s  

s  

L  

a

 

s  

E  

d  

L  

(  

c  

t  

e  

m  

r  

s  

[

R  

w  

n  

t  

s  

p  

h
R
A
0

. Introduction 

Liquid crystals (LCs) continue to be developed into new technologies
hat take advantage of their optical, electric/magnetic, and mechanical
roperties [1,2] . The most well-known aspect of LCs are their optical
roperties [3–7] which have found newer uses in electronic shutters
8] and novel types of lasers [9,10] . Moreover, LCs affinity for electric
nd magnetic fields is well-established [11–13] which is used to enable
ew types of devices [14,15] . Furthermore, LCs are an integral compo-
ent of elastomeric materials [16–19] , which can enable dynamic shape
ontrol of elastic bodies [20,21] . Indeed, a key requirement for creat-
ng complex structured materials [22,23] is to take advantage of novel
orms of self-assembly [24–26] . In particular, LCs coupled with colloidal
article effects [27–30] can enable functionalized materials [31–33] . 

Naturally, numerical computation is a critical tool to enable the ex-
loration of LC physics and device design [34–36] . An extensive body
f research exists on simulation methods for a variety of LC modeling
ituations [37] . Some approaches focus on equilibrium states of LCs pos-
ibly coupled with external effects [38–45] , while others tackle dynamic
C systems [46–50] . See [51–60] for more references on the numerical
nalysis of LCs. 
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In this paper, we describe a method for speeding up equilibrium
imulations of LCs for two different, but related, models of LCs: the
ricksen model [57,58,61] , and the uniaxially constrained Landau-
eGennes model [62–64] . The hallmark of these models is that the Euler-
agrange equation is a degenerate elliptic partial differential equation
PDE) [52,55,65,66] . The nature of the degeneracy induces a non-linear
oupling between the two order parameters of the system that leads
o a kind of non-standard “stiffness ” when solving a linearized gradi-
nt flow to find local minimizers. We describe an alternating Schwarz
ethod that can alleviate some of this stiffness. Indeed, it is able to

educe the simulation time (for finding a local minimizer) while pre-
erving our robust gradient flow methods (monotone energy decreasing)
41,42,55–57] , and is still easy to implement. 

emark 1 (Main Contribution) . Computing minimizers of LC models,
hen defects are present, is difficult. Indeed, applying straightforward
umerical procedures to these models suffer from slow convergence
o the minimizer because of the singular nature of defects. This paper
hows that isolating the defect region with a domain decomposition ap-
roach can help speed up gradient flow schemes and converge to the
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An outline is as follows. Section 2 reviews the Ericksen model and the
andau-de Gennes (LdG) model of LCs; for the LdG model, the focus is on
ncluding the uniaxial constraint which yields a model similar to the Er-
cksen model with respect to the singularity of defects. Section 3 reviews
he finite element discretization of the Ericksen model only (we defer to
63,64] for the uniaxial LdG discretization). In Section 4 , we describe
he gradient flow scheme for the discrete Ericksen energy (the scheme
or the uniaxial LdG method is similar and can be found in [63,64] ). In
ddition, we explain the domain decomposition approach that we use to
ugment the gradient flow. Section 5 presents numerical results show-
ng how convergence is affected by the domain decomposition approach.
ection 6 gives some concluding remarks. 

. Liquid crystal models 

A standard model for LCs is the Landau-deGennes model that uses
 mesoscopic order parameter Q , which is a d × d matrix in ℝ 

𝑑 , that
s motivated by an ensemble type of averaging [67,68] . With the tools
f classical continuum mechanics, one can formulate an energy func-
ional which the LC material minimizes at equilibrium (i.e. the Landau-
eGennes energy). Mathematical analysis of the Q -tensor model has
een done in several works; for instance, see [38,69–74] . 

On the other hand, the Oseen-Frank model is the simplest, macro-
copic model of a nematic LC [68,75,76] , which uses a unit vector field
 ( 𝐱) ∈ ℝ 

𝑑 (the director ) as the order parameter. The energy functional
in the one-constant case) is given by ∫Ω| ∇ n | 2 . Despite being a work-
orse of the display industry [4,77,78] , it suffers a major drawback in
hat defects (discontinuities in n ), such as point defects in ℝ 

2 and line
efects in ℝ 

3 have infinite energy. 
In this paper, we focus on two different LC models. The first is the

ne-constant Ericksen model ( Section 2.1 ), and the second is a uniaxi-
lly constrained version of the Landau-deGennes Q -model ( Section 2.2 ).
he hallmark of these models is an elliptic degeneracy that is directly
onnected to fundamental symmetries in the LC material, which induces
 non-trivial kind of “stiffness ” in the equations to solve to find a min-
mizer. The main contribution of this paper is an alternating Schwarz
ethod that is able to alleviate this stiffness which we justify with ex-

ensive computational evidence. 
Throughout the paper, we assume Ω is a bounded Lipschitz domain

n ℝ 

𝑑 with 𝑑 = 2 , or 3, representing the LC domain. We use standard
otation for 𝐿 

2 (  ) , [ 𝐿 

2 (  )] 𝑑 , [ 𝐿 

2 (  )] 𝑑×𝑑 inner products throughout:
 𝑢, 𝑣 )  ∶= ∫ 𝑢𝑣, ( 𝐮 , 𝐯 )  ∶= ∫ 𝐮 ⋅ 𝐯 , ( 𝐌 , 𝐘 )  ∶= ∫ 𝐌 ∶ 𝐘 , where  is a
eneric domain. We simplify the notation with ( u, v ) ≔ ( u, v ) Ω when in-
egrating over Ω. Integrals over co-dimension 1 subsets, such as Γ⊂𝜕Ω,
lways use a subscript, e.g. ( u, v ) Γ. 

.1. Ericksen’s model 

The Ericksen model uses two order parameters: a director field 𝐧 ∶
→ 𝕊 𝑑−1 , i.e. a vector-valued function with unit length point-wise, and

 degree-of-orientation scalar field 𝑠 ∶ Ω ⊂ ℝ 

𝑑 → [−1∕( 𝑑 − 1) , 1] . The di-
ector represents an average alignment of LC molecules at a macroscopic
evel. Since |𝐧 | = 1 , it cannot describe a “loss of order ” in the liquid crys-
al material. The s variable models how well aligned the individual LC
olecules are with n and s may vanish which means the LC molecules
ave no net alignment in any direction. See [57,68] for more details on
he meaning of n and s . 

emark 2. The use of a vector field for n has an important limitation.
ematic LCs are usually treated as having a reflection symmetry along

heir main axis, which means they are best represented by a line segment ,
ot a vector that has a direction . This means that the Ericksen model can-
ot capture half-integer defects, which do occur in some LC experiments
depending on boundary conditions) [71,72] . 

Despite this, Ericksen provides a simple model to demonstrate the
omain decomposition approach in this paper. In particular, integer de-
ects are modeled correctly by Ericksen and defects play a critical role in
he speed of convergence of the algorithm. In Section 2.2 , we introduce
he Q -model, which does not have this orientation limitation. 

.1.1. Ericksen’s simple energy 

Ericksen’s model seeks a minimizer ( s , n ) of a free energy functional,
hose simplest form is the following (dimensional) energy: 

𝐸 erk [ 𝑠, 𝐧 ] = 𝐸 s [ 𝑠, 𝐧 ] + ∫Ω 𝜓( 𝑠 ) 𝑑𝑥, 

 s [ 𝑠, 𝐧 ] ∶ = 

1 
2 ∫Ω

(
𝑏 0 |∇ 𝑠 |2 + 𝑘 0 𝑠 

2 |∇ 𝐧 |2 )𝑑𝑥, (1) 

here b 0 , k 0 > 0 are model parameters with typical physical values for
 0 ≈ 10 −11 J/m [79, Table 1, pg. 168] . We are unaware of experimental
ata for b 0 , so we assume 𝑏 0 = 𝑂( 𝑘 0 ) . 

The double well potential 𝜓 is a C 

2 function defined on −1∕( 𝑑 − 1) <
 < 1 that satisfies [61,65,66] 

(i) lim 𝑠 →1 𝜓( 𝑠 ) = lim 𝑠 →−1∕( 𝑑−1) 𝜓( 𝑠 ) = ∞, 

(ii) 𝜓(0) > 𝜓( 𝑠 ∗ ) = min 𝑠 ∈[−1∕( 𝑑−1) , 1] 𝜓( 𝑠 ) = 0 for some s ∗ ∈ (0, 1), 
(iii) 𝜓 

′(0) = 0 . 

emark 3. The form of 𝜓 follows from the (uniaxial) Landau-deGennes
heory of nematic LCs [1,68] . Often, the following choice is made: 

( 𝑠 ) = 

𝐴 

′

2 
𝑠 2 − 

𝐵 

′

3 
𝑠 3 + 

𝐶 

′

4 
𝑠 4 , (2) 

hich is connected to the Landau-deGennes theory (see Section 2.2.2 ).
he parameters A ′ , B ′ , C ′ depend on the material with B ′ , C ′ positive and
 ′ having no definite sign. Usually, A ′ is proportional to a temperature
ifference [80] having the form 𝐴 

′ ∝ ( 𝑇 − 𝑇 ∗ ) , where T is the actual
emperature and T ∗ is the super-cooling temperature. Physical values
or A ′ , B ′ , and C ′ are approximately 10 5 J/m 

3 [79, Table 1, pg. 168] . 
Choosing (2) for 𝜓 automatically satisfies property (iii). If A ′ is

ounded by a sufficiently small positive number 𝐴 

′
0 , then property (ii)

s also satisfied (this corresponds to having a stable nematic phase). Al-
ernatively, if A ′ is very large (positive), then the only stable phase is
he isotropic phase, meaning 𝑠 = 0 everywhere. Property (i) is not sat-
sfied by (2) . However, the s 4 term can be modified near the bounds
 = −1∕( 𝑑 − 1) , +1 to enforce property (i), without affecting the stability
f the nematic phases. 

To make the numerics simpler, we assume the form of (2) for 𝜓 ,
owever, one can add barrier/penalty functions to enforce property (i).

When the degree of orientation s is a non-zero constant, the energy
 s [ s , n ] is essentially the Oseen-Frank free energy ∫Ω| ∇ n | 2 . With dis-
ontinuities in n (i.e. defects), the degree of orientation s will vanish in
he vicinity of the defect to avoid a singular energy. Thus, defects in n
ust occur in the singular set 

 𝑥 ∈ Ω ∶ 𝑠 ( 𝑥 ) = 0} . (3) 

xistence of minimizers was shown in [65,66] and analytic solutions
or minimizers with defects were constructed in [68] . Minimizers with
ther types of defect structures were discovered numerically in [55] . 

emark 4. An obvious approach to the Ericksen energy is to regularize
t, e.g. replace E s [ s , n ] by 𝐸 

𝜖
s [ 𝑠, 𝐧 ] = 

1 
2 ∫Ω( 𝑏 0 |∇ 𝑠 |2 + 𝑘 0 ( 𝑠 2 + 𝜖2 ) |∇ 𝐧 |2 ) for

ome finite 𝜖 > 0 as was done in [52,81] . Unfortunately, this fundamen-
ally changes the Ericksen model into a variant of Oseen-Frank, implying
hat point defects in two dimensions, and line defects in three dimen-
ions, will give 𝐸 

𝜖
s [ 𝑠, 𝐧 ] = +∞. Therefore, when defects are important,

nd they often are, a simple regularization approach does not work . 

.1.2. Non-dimensionalization 

We now non-dimensionalize the energy in (1) (see also [80] ); note
hat s and n are already non-dimensional. Let 𝐴 

′
0 be the characteristic

cale for the double well (see Remark 3 ), and define 𝜖dw ∶= 

√ 

𝑘 0 ∕( 𝐴 

′
0 𝑅 

2 
0 ) ,

here 𝑅 = diam (Ω) is the length scale. Then, (1) becomes 
0 



S. Carter, A. Rotem and S.W. Walker Journal of Non-Newtonian Fluid Mechanics 283 (2020) 104335 

𝐸

𝐸

w  

a  

d  

w

2

 

[

𝐸

w  |  

s



w

𝐮

𝐧

i  

m  

i

R  

f  

t  

a

2

 

ℝ

A  

𝐫  

i  

fi

𝜌

N

 

m  

p  

d  

m


w  

u  

m

m

 

s  

a  

[

2

 

m

2

 

v

𝐐

i  

e

𝐐

w  

b  

e  

i
 

𝑠  

[

𝜆

𝜆

𝜆

t  

o

𝐐

w  

t  

𝑠  

b

 

h  

d  

c  

o  

p  

“

R  

w  

s

𝐐

w  

t  

m  

d  

a  

u

𝐐

w

2

 

t  

b

𝐸

 erk [ 𝑠, 𝐧 ] = 𝑘 0 𝑅 0 𝐸 erk [ 𝑠, 𝐧 ] , 𝐸 erk [ 𝑠, 𝐧 ] = 𝐸 s [ 𝑠, 𝐧 ] + 

1 
𝜖2 dw 

𝐸 dw [ 𝑠 ] , 

𝐸 dw [ 𝑠 ] ∶= ∫Ω �̄� ( 𝑠 ) 𝑑𝐱 = ( ̄𝜓 ( 𝑠 ) , 1 ) , �̄� ( 𝑠 ) = 

1 
𝐴 

′
0 
𝜓( 𝑠 ) , (4) 

 s [ 𝑠, 𝐧 ] ∶= 

1 
2 ∫Ω

(
�̄� 0 |∇ 𝑠 |2 + 𝑠 2 |∇ 𝐧 |2 )𝑑𝐱 = 

1 
2 
[
�̄� 0 ( ∇ 𝑠, ∇ 𝑠 ) + ( 𝑠 ∇ 𝐧 , 𝑠 ∇ 𝐧 ) 

]
, 

(5) 

here ̄𝑏 0 = 𝑏 0 ∕ 𝑘 0 , �̄� ( 𝑠 ) , 𝐸 s [ 𝑠, 𝐧 ] , and 𝐸 dw [ 𝑠 ] are non-dimensional, as well
s the domains. For the rest of the paper, we deal with 𝐸 erk [ 𝑠, 𝐧 ] and
rop the “bar ” from the non-dimensional quantities for simplicity (i.e.
e ignore the pre-factor k 0 R 0 in E erk [ s , n ]). 

.1.3. Function space framework 

An auxiliary variable u ≔ s n and identity was introduced in
65,66] that allows the energy E s [ s , n ] to be rewritten as 

 s [ 𝑠, 𝐧 ] = 𝐸 s [ 𝑠, 𝐮 ] ∶= 

1 
2 ∫Ω

(
( 𝑏 0 − 1) |∇ 𝑠 |2 + |∇ 𝐮 |2 )𝑑𝑥, (6) 

hich follows from ∇ 𝐮 = 𝐧 ⊗ ∇ 𝑠 + 𝑠 ∇ 𝐧 and the unit length constraint
𝐧 | = 1 . This suggests the following choice for the (closed) admissible
et of minimizers [65,66] : 

 ∶ = {( 𝑠, 𝐧 ) ∈ 𝐻 

1 (Ω) 

× [ 𝐿 

∞(Ω)] 𝑑 ∶ ( 𝑠, 𝐮 , 𝐧 ) satisfies (8), with 𝐮 ∈ [ 𝐻 

1 (Ω)] 𝑑 } , (7) 

here 

 = 𝑠 𝐧 , −1∕( 𝑑 − 1) ≤ 𝑠 ≤ 1 a.e. in Ω, and 

 ∈ 𝕊 𝑑−1 a.e. in Ω, (8) 

s called the structural condition of  . If we write ( s , u, n ) in  , we
ean that ( s , n ) in  , u in [ H 

1 ( Ω)] d , and ( s , u, n ) satisfies (8) . Note: the
dentity (6) only holds for ( s , u, n ) in  . 

emark 5. The purpose of the variable 𝐮 = 𝑠 𝐧 is to make sense of the
unctional analytic framework in which the Ericksen model, at the con-
inuous level, makes sense. The numerical algorithm does not use u in
ny way, but u is needed to justify the convergence of the method. 

.1.4. Boundary conditions 

Boundary conditions are captured by functions 𝑔 ∶ ℝ 

𝑑 → ℝ , 𝐫, 𝐪 ∶
 

𝑑 → ℝ 

𝑑 that satisfy the following. 

ssumption 6 (Boundary Data is Regular) . There exists 𝑔 ∈ 𝑊 

1 , ∞( ℝ 

𝑑 ) ,
 ∈ [ 𝑊 

1 , ∞( ℝ 

𝑑 )] 𝑑 , 𝐪 ∈ [ 𝐿 

∞( ℝ 

𝑑 )] 𝑑 , such that ( g , r, q ) satisfies (8) on ℝ 

𝑑 ,

.e. 𝐫 = 𝑔𝐪 and 𝐪 ∈ 𝕊 𝑑−1 a.e. in ℝ 

𝑑 . Furthermore, we assume there is a
xed 𝜌0 > 0 such that 

0 ≤ 𝑔 ≤ 1 − 𝜌0 . (9) 

ote that q ∈ [ W 

1, ∞({| g | > 𝜖})] d , for all 𝜖 > 0. 

Weak anchoring conditions [57,58,68] are sometimes used in LC
odels as a way to enforce boundary conditions through energetic
enalty terms. For simplicity, we use strong (Dirichlet) boundary con-
itions for both s and n on the whole boundary Γ ≔ 𝜕Ω. Thus, the ad-
issible class, with boundary conditions, is given by 

 ( 𝑔, 𝐪 ) ∶= 

{
( 𝑠, 𝐧 ) ∈  ∶ 𝑠 |Γ = 𝑔, 𝐧 |Γ = 𝐪 

}
, (10) 

here we use a similar abuse of notation as above when writing ( s ,
, n ) in  ( 𝑔, 𝐪 ) . Note: n is H 

1 in a neighborhood of Γ. Therefore, the
inimization problem is as follows [65,66] 

in ( 𝑠, 𝐧 )∈ ( 𝑔, 𝐪 ) 𝐸 erk [ 𝑠, 𝐧 ] . (11) 

This paper is concerned with a domain decomposition approach for
peeding up the computation of minimizers with defects for the Ericksen
nd uniaxially constrained Landau-deGennes model. Hence, we refer to
55,57,58] for more details on the theory behind the Ericksen model. 
.2. The Landau-deGennes model 

We follow [1,38,39,82] for the standard Landau-deGennes (LdG)
odel. 

.2.1. The Q model 

We first present the LdG model in ℝ 

3 ( 𝑑 = 3 ). LdG uses a tensor-
alued order parameter 𝐐 ∶ Ω → ℝ 

3×3 , which satisfies 

 ∈ 𝚲 ∶= 

{
𝐐 ∈ ℝ 

3×3 ∣ 𝐐 = 𝐐 

𝑇 , tr 𝐐 = 0 
}
. (12) 

.e. is symmetric and traceless. To understand the meaning of Q , let us
xpress Q (at some point in Ω) in its eigenframe: 

 = 𝑠 1 ( 𝐧 1 ⊗ 𝐧 1 ) + 𝑠 2 ( 𝐧 2 ⊗ 𝐧 2 ) − 

1 
3 ( 𝑠 1 + 𝑠 2 ) 𝐈 , (13) 

here n 1 , n 2 are orthonormal eigenvectors of Q , with eigenvalues given
y 𝜆1 = 

2 𝑠 1 − 𝑠 2 
3 , 𝜆2 = 

2 𝑠 2 − 𝑠 1 
3 , 𝜆3 = − 

𝑠 1 + 𝑠 2 
3 , where 𝜆3 corresponds to the

igenvector 𝐧 3 ⟂ 𝐧 1 , 𝐧 2 . For physical reasons, the eigenvalues should lie
n the interval [−1∕3 , 2∕3] . 

If all eigenvalues are equal, since Q is traceless, 𝜆1 = 𝜆2 = 𝜆3 = 0 and
 1 = 𝑠 2 = 0 , i.e. 𝐐 = 𝟎 and the distribution of LC molecules is isotropic
68] . If two eigenvalues are equal, i.e. 

1 = 𝜆2 ⇔ 𝑠 1 = 𝑠 2 , 

1 = 𝜆3 ⇔ 𝑠 1 = 0 , 

2 = 𝜆3 ⇔ 𝑠 2 = 0 , (14) 

hen we call this state uniaxial , because it has one main eigenvector (the
ther two are indistinguishable). In this case, Q has the form 

 = 𝑠 
(
𝐧 ⊗ 𝐧 − 

1 
3 𝐈 
)
, (15) 

here n is the main eigenvector with eigenvalue 𝜆 = (2∕3) 𝑠 ; the other
wo eigenvalues equal −(1∕3) 𝑠 . Because of the range of the eigenvalues,
 ∈ [−1∕2 , 1] . If all three eigenvalues are distinct, then the state is called
iaxial , and Q has the general form (13) . 

Let us focus on the uniaxial case. The variable s has the same meaning
ere as in Ericksen’s model. But now n has been replaced by n ⊗n , which
oes not suffer from the orientation issue (see Remark 2 ). Indeed, n ⊗n

an represent the average orientation of the LC molecules in the sense
f line segments (i.e. no artificial orientation). In the biaxial case, four
arameters ( s 1 , s 2 , n 1 ⊗n 1 , n 2 ⊗n 2 ) are necessary to capture the two
modes ” of alignment that LC molecules could have. 

emark 7. For the LdG model, the standard analytic treatment is to deal
ith Q directly, i.e. we do not separate it into the constituent parts: s 1 ,
 2 , n 1 ⊗n 1 , n 2 ⊗n 2 . Instead, we have 

 ∈ 𝚲 ⇔ 𝐐 = 

⎡ ⎢ ⎢ ⎣ 
𝑞 11 𝑞 12 𝑞 13 

𝑞 22 𝑞 23 
𝑞 33 

⎤ ⎥ ⎥ ⎦ , where 𝑞 33 ∶= − 𝑞 11 − 𝑞 22 , (16) 

here the lower triangular terms are, of course, determined by symme-
ry. This makes the analytical framework more direct, and the numerical
ethod more straightforward than in the Ericksen model. However, a
rawback is that the computational effort may be higher because there
re five independent variables to compute. In addition, the structure of
niaxial minimizers may not be respected [63,64] (see Section 2.3 ). 

In two dimensions, i.e. 𝐐 ∶ Ω → ℝ 

2×2 , Q always has the form 

 = 𝑠 
(
𝐧 ⊗ 𝐧 − 

1 
2 𝐈 
)
, (17) 

here 𝐧 ∶ Ω → ℝ 

2 , and 𝑠 ∈ [−1 , 1] . 

.2.2. Landau-deGennes energy 

The LdG model seeks a minimizer Q of a free energy functional. Of-
en, the one-constant model is used, which is stated in dimensional terms
y [1,67,82] : 

 LdG , one [ 𝐐 ] ∶= 

1 ∫Ω 𝐿 1 |∇ 𝐐 |2 𝑑 𝐱 + ∫Ω 𝜓 LdG ( 𝐐 ) 𝑑 𝐱, (18) 
2 
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here L 1 is a material parameter (on the order of 10 −11 J/m [79, Table 1,
g. 168] ), | ∇ Q | 2 ≔ ( 𝜕 k Q ij )( 𝜕 k Q ij ) (we use the convention of summation
ver repeated indices), and 𝜓 LdG is a “bulk ” (thermotropic) potential.
ore complicated energies can also be considered [1,67,82] . 

The bulk potential 𝜓 LdG is a double-well type of function that con-
rols the eigenvalues of Q , where the simplest form is given by 

 LdG ( 𝐐 ) = 𝐾 + 

𝐴 

2 tr ( 𝐐 

2 ) − 

𝐵 

3 tr ( 𝐐 

3 ) + 

𝐶 

4 

(
tr ( 𝐐 

2 ) 
)2 
, (19)

here A, B, C are material parameters such that A has no sign, and
, C are positive; K is a convenient constant to ensure non-negativity
f 𝜓 LdG ( Q ). Usually, A is temperature dependent, e.g. 𝐴 = 𝛼( 𝑇 − 𝑇 ∗ ) .
tandard physical values for these parameters are approximately 10 5 

/m 

3 [79, Table 1, pg. 168] . 
If A is bounded by a sufficiently small constant, then it is well-known

67] that the global minimizer Q 

∗ of (19) has a uniaxial form. Thus, the
ouble well functions (19) and (2) are connected in the following way.
ssuming Q is uniaxial (15) , we have the following calculations (in three
imensions) 

r ( 𝐐 

2 ) = 

2 
3 
𝑠 2 , tr ( 𝐐 

3 ) = 

2 
9 
𝑠 3 . (20)

ence, 

 LdG ( 𝐐 ) = 𝐾 + 

𝐴 (2∕3) 
2 𝑠 2 − 

𝐵(2∕9) 
3 𝑠 3 + 

𝐶(4∕9) 
4 𝑠 4 , (21)

o then 𝐴 

′ = 𝐴 (2∕3) , 𝐵 

′ = 𝐵(2∕9) , 𝐶 

′ = 𝐶(4∕9) . Typical choices of these
arameters yield an asymmetric double-well function (in terms of s ) with
wo local minimizers located at 𝑠 − < 0 and 𝑠 + > 0 with 𝑠 + being the
lobal minimizer. 

In two dimensions, the double-well has a modified form. For a uni-
xial Q in ℝ 

2 , 𝐐 

2 = ( 𝑠 2 ∕4) 𝐈 , thus tr ( 𝐐 

2 ) = 𝑠 2 ∕2 and tr ( 𝐐 

3 ) = 0 . Therefore,
21) becomes 

 LdG ( 𝐐 ) = 𝐾 + 

𝐴 ∕2 
2 𝑠 

2 + 

𝐶∕4 
4 𝑠 

4 , (22)

o then 𝐴 

′ = 𝐴 ∕2 , B ′ ≡ 0, 𝐶 

′ = 𝐶∕4 . Clearly, (22) is symmetric in s . More-
ver, A must be negative to yield a double well with two symmetric
lobal minimizers. 

.2.3. Non-dimensionalization 

Following a similar approach in [80] , we non-dimensionalize the en-
rgy in (18) ; note that Q is already non-dimensional. Let A 0 be the char-

cteristic scale for the double well (19) , and define 𝜂B ∶= 

√ 

𝐿 1 ∕( 𝐴 0 𝑅 

2 
0 ) ,

here 𝑅 0 = diam (Ω) is the length scale. Then, (18) becomes 

𝐸 LdG , one [ 𝐐 ] = 𝐿 1 𝑅 0 𝐸 LdG , one [ 𝐐 ] , 

𝐸 LdG , one [ 𝐐 ] = ∫Ω |∇ 𝐐 |2 𝑑𝐱 + 

1 
𝜂2 B 

𝐸 b [ 𝐐 ] , (23)

 b [ 𝐐 ] ∶= ∫Ω �̄� LdG ( 𝐐 ) 𝑑𝐱, �̄� LdG ( 𝐐 ) = 

1 
𝐴 0 

𝜓 LdG ( 𝐐 ) , (24)

here �̄� LdG ( 𝐐 ) ,  LdG , and 𝐸 b [ 𝐐 ] are non-dimensional, as well as the
omains. For the rest of the paper, we deal with 𝐸 LdG [ 𝐐 ] and drop the
bar ” from the non-dimensional quantities for simplicity (i.e. we ignore
he pre-factor L 1 R 0 in E LdG [ Q ]). 

.2.4. Function space framework 

We briefly review the function space setting of the LdG model, which
s mostly standard; see [38] for more details. The function space for Q
hen seeking a minimizer is given by 

 ( 𝐆 ) ∶= 

{
𝐐 ∈ 𝐻 

1 (Ω) ∣ 𝐐 ( 𝐱) ∈ 𝚲, ∀𝐱 ∈ Ω, 𝐐 |Γ = 𝐆 

}
, (25)

here G ∈ H 

1 ( Ω) is arbitrary such that G ( x ) ∈ 𝚲 for all x ∈ Ω. 
The minimization problem for the Landau-deGennes free energy

unctional is as follows 
min 
 ∈𝑉 ( 𝐐 𝐷 ) 

𝐸 LdG [ 𝐐 ] , (26) 

here Q D ∈ H 

1 ( Ω) is given and Q D ( x ) ∈ 𝚲 for all x ∈ Ω. This min-
mization problem is not as delicate as (11) ; for instance, there is no
on-convex constraint. Existence of a minimizer for (26) is guaranteed
y standard elliptic PDE theory, i.e. from [38, Thm 6.3] , we have the
ollowing result. 

heorem 8 (regularity) . Let Ω be a bounded, open, connected set, and

ssume Ω is either convex or C 

1,1 . Then any solution of (26) satisfies 𝐐 −
 𝐷 ∈ 𝐻 

2 (Ω) ∩𝐻 

1 
0 (Ω) provided Q D ∈ H 

2 ( Ω) . 

emark 9 (uniaxial boundary conditions) . It is typical to choose Q D of
he form 𝐐 𝐷 = 𝑠 ∗ ( 𝝂 ⊗ 𝝂 − 

1 
3 𝐈 ) , where 𝝂 ≡ [ 𝜈𝑘 ] 3 𝑘 =1 is the unit outer normal

f Γ, and s ∗ is the global min of 𝜓 . We use this choice throughout. 

.3. The uniaxially constrained Landau-deGennes model 

Many thermotropic LCs do not exhibit biaxiallity, i.e. they are purely
niaxial [67, Section 4.1] ; indeed, only relatively recently was a biaxial
hermotropic LC found [83–85] . However, minimizing the one-constant
andau-deGennes energy E LdG,one [ Q ] (23) does not guarantee that the
inimizer will be uniaxial (15) ; indeed, they may have a biaxial escape ,

specially near a defect [86–88] . Thus, the standard LdG model does not
xplicitly respect the structure of many common LC materials. 

Therefore, we consider the so-called uniaxially constrained Landau-
eGennes one-constant model. This constrained model has many simi-
arities with the Ericksen model, yet it is still capable of modeling line
elds and capturing half-integer defects. 

.3.1. Model derivation 

For a uniaxially constrained Q -tensor as in (15) , we write 𝚯 = 𝐧 ⊗ 𝐧 ,
hich will be treated as a control variable in minimizing (23) . Define

he set 

 

𝑑−1 = { 𝐀 ∈ ℝ 

𝑑×𝑑 ∶ there exists 𝐧 ∈ 𝕊 𝑑−1 , 𝐀 = 𝐧 ⊗ 𝐧 } , (27) 

hich can be identified with the real projective space 𝐑𝐏 𝑑−1 through
he map 

 ⊗ 𝐧 ⟼ { 𝐧 , − 𝐧 } . 

ence, the uniaxially constrained (LdG) model takes into account the
olecular direction but not the orientation, so it does not have the same

rientational bias as the Oseen-Frank and Ericksen models. 
Taking d to be the dimension, recalling (15), (17) , and noting ∇ 𝐐 =

 𝑠 ⊗ ( 𝚯 − 

1 
𝑑 
𝐈 ) + 𝑠 ∇ 𝚯, we have 

∇ 𝐐 |2 = |∇ 𝑠 |2 ||||𝚯 − 

1 
𝑑 
𝐈 
||||2 + 𝑠 2 |∇ 𝚯|2 + 2 𝑠 

[
∇ 𝑠 ⊗

(
𝚯 − 

1 
𝑑 
𝐈 
)]

∶ ∇ 𝚯. 

ince |𝚯 − 

1 
𝑑 
𝐈 |2 = 

𝑑−1 
𝑑 

and [∇ 𝑠 ⊗ ( 𝚯 − 

1 
𝑑 
𝐈 ] ∶ ∇ 𝚯 = 0 , we get |∇ 𝐐 |2 =

𝑑−1 
𝑑 
|∇ 𝑠 |2 + 𝑠 2 |∇ 𝚯|2 . So enforcing the uniaxial constraint directly in

23) leads to the following (non-dimensionalized) energy functional 

𝐸 LdG , one [ 𝐐 ] = 𝐸 uni [ 𝑠, 𝚯] = 𝐸 uni −m [ 𝑠, 𝚯] + 

1 
𝜂2 B 

𝐸 dw [ 𝑠 ] , 

 uni −m [ 𝑠, 𝚯] ∶= 

1 
2 

( 

𝑑 − 1 
𝑑 ∫Ω |∇ 𝑠 |2 𝑑𝑥 + ∫Ω 𝑠 2 |∇ 𝚯|2 𝑑𝑥 ) 

, (28) 

hich is the exact same form as (4), (5) except 𝚯 replaces n and b 0 
eplaces ( 𝑑 − 1)∕ 𝑑. 

.3.2. Function space and boundary conditions 

Following the same outline as in Section 2.1.3 , we introduce a change
f variable 𝐔 = 𝑠 𝚯 and rewrite 
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 uni −m [ 𝑠, 𝚯] = 𝐸 uni −m [ 𝑠, 𝐔 ] ∶= 

1 
2 

( 

− 

1 
𝑑 ∫Ω |∇ 𝑠 |2 𝑑𝑥 + ∫Ω |∇ 𝐔 |2 𝑑𝑥 ) 

. (29) 

ence, the admissible class is 

 uni ∶ = {( 𝑠, 𝚯) ∈ 𝐻 

1 (Ω) 

× [ 𝐿 

∞(Ω)] 𝑑×𝑑 ∶ ( 𝑠, 𝐔 , 𝚯) satisfies (31), with 𝐮 ∈ [ 𝐻 

1 (Ω)] 𝑑 } , (30) 

ith the structural condition 

 = 𝑠 𝚯, −1∕( 𝑑 − 1) ≤ 𝑠 ≤ 1 a.e. in Ω, and 𝚯 ∈ 𝐿 

𝑑−1 a.e. in Ω. (31) 

oreover, we make similar assumptions on the boundary data as in
ssumption 6 . 

ssumption 10 (Boundary Data is Regular) . There exists 𝑔 ∈
 

1 , ∞( ℝ 

𝑑 ) , 𝐑 ∈ [ 𝑊 

1 , ∞( ℝ 

𝑑 )] 𝑑×𝑑 , 𝐌 ∈ [ 𝐿 

∞( ℝ 

𝑑 )] 𝑑×𝑑 , such that ( g , R, M )
atisfies (31) on ℝ 

𝑑 , i.e. 𝐑 = 𝑔𝐌 and 𝐌 ∈ 𝐿 

𝑑−1 a.e. in ℝ 

𝑑 . Furthermore,
e assume that g satisfies (9) . 

Therefore, the minimization problem is as follows 

in ( 𝑠, 𝐧 )∈ uni ( 𝑔, 𝐌 ) 𝐸 uni [ 𝑠, 𝚯] , (32) 

n the admissible class 

 uni ( 𝑔, 𝐌 ) ∶= 

{
( 𝑠, 𝐧 ) ∈  uni ∶ 𝑠 |Γ = 𝑔, 𝚯|Γ = 𝐌 

}
, (33) 

ee [63,64] for more details on this constrained model. 

. Finite element discretization 

We briefly describe the discretization approach to the Ericksen
odel in order to fully explain our domain decomposition approach in

ection 4.2 . More details about the discretization scheme can be found
n [55,57] . Since the uniaxially constrained LdG model and Ericksen
odel are very similar, especially with regard to singularity of defects,
e defer description of the discretization of (28) to [63,64] for more
etails. 

.1. Finite element spaces 

We adopt an approach similar to [55, Sec. 2.2] , except we discretize
he Ericksen energy differently. First, approximate Ω by Ωh which comes
rom a conforming shape regular triangulation  ℎ = { 𝑇 𝑖 } consisting of
implices. For simplicity, we assume that Ω ≡ Ωh , i.e. there is no geo-
etric error caused by the triangulation. Furthermore, let  ℎ be the set

f nodes (vertices) of  ℎ and let N be the cardinality of  ℎ (with some
buse of notation). 

Next, define continuous piecewise linear finite element spaces on
: 

𝑆 ℎ ∶= { 𝑠 ℎ ∈ 𝐻 

1 (Ω) ∶ 𝑠 ℎ |𝑇 ∈  1 ( 𝑇 ) , ∀𝑇 ∈  ℎ } , 
𝑈 ℎ ∶= { 𝐮 ℎ ∈ [ 𝐻 

1 (Ω)] 𝑑 ∶ 𝐮 ℎ |𝑇 ∈  1 ( 𝑇 ) , ∀𝑇 ∈  ℎ } , 
 ℎ ∶= { 𝐧 ℎ ∈ 𝑈 ℎ ∶ |𝐧 ℎ ( 𝐱 𝑖 ) | = 1 , ∀𝐱 𝑖 ∈  ℎ } , (34) 

here the unit length constraint is enforced in N h at the nodes (ver-
ices) of the mesh. Dirichlet boundary conditions are included via the
ollowing discrete spaces: 

𝑆 ℎ ( 𝑔 ℎ ) ∶ = { 𝑠 ℎ ∈ 𝑆 ℎ ∶ 𝑠 ℎ |Γ𝑠 = 𝑔 ℎ } , 

𝑈 ℎ ( 𝐫 ℎ ) ∶ = { 𝐮 ℎ ∈ 𝑈 ℎ ∶ 𝐮 ℎ |Γ𝐮 = 𝐫 ℎ } , 

 ℎ ( 𝐪 ℎ ) ∶ = { 𝐧 ℎ ∈ 𝑁 ℎ ∶ 𝐧 ℎ |Γ𝐧 = 𝐪 ℎ } , 

here g h ≔ I h g , r h ≔ I h r , and q h ≔ I h q is the discrete Dirichlet data.
his leads to the following discrete admissible class with boundary con-
itions: 
 

ℎ ( 𝑔 ℎ , 𝐪 ℎ ) ∶ = 

{
( 𝑠 ℎ , 𝐧 ℎ ) ∈ 𝑆 ℎ ( 𝑔 ℎ ) 

×𝑁 ℎ ( 𝐪 ℎ ) ∶ ( 𝑠 ℎ , 𝐮 ℎ , 𝐧 𝑛 ) satisfies (36) , with 𝐮 ℎ ∈ 𝑈 ℎ ( 𝐫 ℎ ) 
}
, 

(35) 

here 

 ℎ = 𝐼 ℎ ( 𝑠 ℎ 𝐧 ℎ ) , −1∕2 ≤ 𝑠 ℎ ≤ 1 in Ω, and |𝐧 ℎ ( 𝐱 𝑖 ) | = 1 , ∀𝐱 𝑖 ∈  ℎ , (36) 

s called the discrete structural condition of  

ℎ . If we write ( s h , u h , n h ) in
 

ℎ , then this is equivalent to ( s h , n h ) in  

ℎ , u h in U h , and ( s h , u h , n h )
atisfies (36) . 

.2. Discrete energy 

The discretization of E s [ s , n ] and E dw 

[ s ] is done in a standard way,
.e. 

 

ℎ 
s 
[
𝑠 ℎ , 𝐧 ℎ 

]
∶= 

1 
2 ∫Ω

(
𝑏 0 |∇ 𝑠 ℎ |2 + 𝑠 2 

ℎ 
|∇ 𝐧 ℎ |2 )𝑑 𝐱, 𝐸 

ℎ 
dw [ 𝑠 ℎ ] ∶= ∫Ω 𝜓( 𝑠 ℎ ) 𝑑𝐱. 

(37) 

emark 11. The energy 𝐸 

ℎ 
s 
[
𝑠 ℎ , 𝐧 ℎ 

]
is not the same as what was con-

idered in [55] . An advantage of (37) is that it is more easily imple-
ented with a standard finite element package than the energy in [55] .
owever, proving Γ-convergence is more involved but can be done by
dapting the techniques in [58] and combining with the results in [55] .

The term ∫Ω 𝑠 2 
ℎ 
|∇ 𝐧 ℎ |2 𝑑𝐱 obeys a monotonicity property which will

e useful in our minimization scheme (see Section 4.1 ). To better ex-
lain this, we introduce the standard piecewise linear “hat ” function 𝜙i 

ssociated with a node 𝐱 𝑖 ∈  ℎ (i.e. { 𝜙i } are the basis functions of the
paces in (34) ). Next, define the entries of the local (weighted) stiffness
atrix corresponding to an element 𝑇 ∈  ℎ : 

̄
 

𝑇 
𝑖𝑗 ( 𝑠 ℎ ) ∶= ∫𝑇 

𝑠 2 
ℎ 
∇ 𝜙𝑖 ⋅ ∇ 𝜙𝑗 𝑑𝐱, for all nodes 𝑖, 𝑗 associated to 𝑇 . (38) 

f all elements in the mesh  ℎ are non-obtuse (i.e. interior angles ≤ 90 ∘),
hen �̄� 𝑇 

𝑖𝑗 
( 𝑠 ℎ ) satisfies the following property 

̄
 

𝑇 
𝑖𝑗 ( 𝑠 ℎ ) ≤ 0 , for all 𝑖 ≠ 𝑗, for all 𝑇 ∈  ℎ . (39) 

hus, defining 𝑘 𝑖𝑗 ( 𝑠 ℎ ) ∶= − ∫Ω 𝑠 2 
ℎ 
∇ 𝜙𝑖 ⋅ ∇ 𝜙𝑗 , for all global indices i, j ,

hen 

 𝑖𝑗 ( 𝑠 ℎ ) ≥ 0 , for all 𝑖 ≠ 𝑗, (40) 

hich follows by simply summing up the local stiffness matrices in the
sual finite element methodology. Of course, requiring a non-obtuse
esh is a severe restriction, especially in three dimensions. However, the
omains we consider allow for easy construction of non-obtuse meshes.

We can now derive an alternate form for 𝐸 

ℎ 
s 
[
𝑠 ℎ , 𝐧 ℎ 

]
. Note that for all

 𝑖 ∈  ℎ 

𝑁 

𝑗=1 
𝑘 𝑖𝑗 ( 𝑠 ℎ ) = − 

𝑁 ∑
𝑗=1 

∫Ω 𝑠 2 
ℎ 
∇ 𝜙𝑖 ⋅ ∇ 𝜙𝑗 𝑑𝑥 = 0 , 

ecause 
∑𝑁 

𝑗=1 𝜙𝑗 = 1 in the domain Ω. So, if 𝑆 ℎ ∋ 𝑤 ℎ = 

∑𝑁 

𝑖 =1 𝑤 ℎ ( 𝐱 𝑖 ) 𝜙𝑖 ,

hen 

Ω
𝑠 2 
ℎ 
|∇ 𝑤 ℎ |2 𝑑𝑥 = − 

𝑁 ∑
𝑖 =1 

𝑘 𝑖𝑖 ( 𝑠 ℎ )[ 𝑤 ℎ ( 𝐱 𝑖 )] 2 − 

𝑁 ∑
𝑖,𝑗=1 ,𝑖 ≠𝑗 

𝑘 𝑖𝑗 ( 𝑠 ℎ ) 𝑤 ℎ ( 𝐱 𝑖 ) 𝑤 ℎ ( 𝐱 𝑗 ) , 

nd using 𝑘 𝑖𝑖 ( 𝑠 ℎ ) = − 

∑
𝑗≠𝑖 𝑘 𝑖𝑗 ( 𝑠 ℎ ) and the symmetry 𝑘 𝑖𝑗 ( 𝑠 ℎ ) = 𝑘 𝑗𝑖 ( 𝑠 ℎ ) , we

et 

Ω
𝑠 2 
ℎ 
|∇ 𝑤 ℎ |2 𝑑𝑥 = 

𝑁 ∑
𝑖,𝑗=1 

𝑘 𝑖𝑗 ( 𝑠 ℎ ) 𝑤 ℎ ( 𝐱 𝑖 ) 
(
𝑤 ℎ ( 𝐱 𝑖 ) − 𝑤 ℎ ( 𝐱 𝑗 ) 

)
= 

1 
2 

𝑁 ∑
𝑖,𝑗=1 

𝑘 𝑖𝑗 ( 𝑠 ℎ ) 
(
𝑤 ℎ ( 𝐱 𝑖 ) − 𝑤 ℎ ( 𝐱 𝑗 ) 

)2 
= 

1 
2 

𝑁 ∑
𝑖,𝑗=1 

𝑘 𝑖𝑗 ( 𝑠 ℎ ) 
(
𝛿𝑖𝑗 𝑤 ℎ 

)2 , (41) 
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Algorithm 1 Gradient flow algorithm for the Ericksen model. 

Set 𝛿𝑡 > 0 . Given ( 𝑠 0 
ℎ 
, 𝐧 0 

ℎ 
) in 𝑆 ℎ ( 𝑔 ℎ ) ×𝑁 ℎ ( 𝐪 ℎ ) ,iterate steps (1)-(2) for 𝑘 ≥ 

0 . 

1. Descent for 𝐧 ℎ . 
(a) Tangent update. Find 𝐭 𝑘 +1 

ℎ 
∈ 𝑈 

⟂
ℎ 
( 𝐧 𝑘 

ℎ 
) ∩𝐻 

1 
Γ(Ω) such that, for 

all 𝐯 ℎ ∈ 𝑈 

⟂
ℎ 
( 𝐧 𝑘 

ℎ 
) ∩𝐻 

1 
Γ(Ω) , we have (see (45)) 

𝑎 𝐧 
(
𝐭 𝑘 +1 
ℎ 

, 𝐯 ℎ 
)
= − 𝛿𝐧 ℎ 𝐸 

ℎ 
erk 
[
𝑠 𝑘 
ℎ 
, ̃𝐧 𝑘 +1 

ℎ 
; 𝐯 ℎ 

]
, �̃� 𝑘 +1 

ℎ 
∶= 𝐧 𝑘 

ℎ 
+ 𝐭 𝑘 +1 

ℎ 
. 

(50) 

(b) Normalization. Update 𝐧 𝑘 
ℎ 

to 𝐧 𝑘 +1 
ℎ 

via 

𝐧 𝑘 +1 𝑖 ∶= 

𝐧 𝑘 
𝑖 
+ 𝐭 𝑘 +1 

𝑖 |𝐧 𝑘 
𝑖 
+ 𝐭 𝑘 +1 

𝑖 
| , at all nodes 𝑥 𝑖 ∈  ℎ . (51) 

2. Gradient descent for 𝑠 ℎ . Find 𝑠 𝑘 +1 
ℎ 

∈ 𝑆 ℎ ( 𝑔 ℎ ) such that, for all 𝑧 ℎ ∈
𝑆 ℎ ∩𝐻 

1 
Γ(Ω) , we have (see (46) and (48)) 

𝑎 𝑠 

( 

𝑠 𝑘 +1 
ℎ 

− 𝑠 𝑘 
ℎ 

𝛿𝑡 
, 𝑧 ℎ 

) 

= − 𝛿𝑠 ℎ 𝐸 

ℎ 
erk 
[
𝑠 𝑘 +1 
ℎ 

, 𝐧 𝑘 +1 
ℎ 

; 𝑧 ℎ 
]
. (52) 

The algorithm terminates when the change in the energy 𝐸 

ℎ 
erk 
[
𝑠 ℎ , 𝐧 ℎ 

]
is 

below a certain tolerance. 
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here we define 

𝑖𝑗 𝑤 ℎ ∶= 𝑤 ℎ ( 𝐱 𝑖 ) − 𝑤 ℎ ( 𝐱 𝑗 ) , 𝛿𝑖𝑗 𝐰 ℎ ∶= 𝐰 ℎ ( 𝐱 𝑖 ) − 𝐰 ℎ ( 𝐱 𝑗 ) , (42)

or any w h ∈ S h and w h ∈ U h . Thus, we can write 𝐸 

ℎ 
s [ 𝑠 ℎ , 𝐧 ℎ ] as 

 

ℎ 
s 
[
𝑠 ℎ , 𝐧 ℎ 

]
∶= 

1 
2 ∫Ω 𝑏 0 |∇ 𝑠 ℎ |2 𝑑𝐱 + 

1 
4 

𝑁 ∑
𝑖,𝑗=1 

𝑘 𝑖𝑗 ( 𝑠 ℎ ) |𝛿𝑖𝑗 𝐧 ℎ |2 , (43)

riting the energy in this way leads to the following monotonicity re-
ult. 

roposition 12. Suppose the mesh  ℎ is non-obtuse, namely (40) holds.

hen, (43) has the following property: 

 

ℎ 
s 
[
𝑠 ℎ , 𝐰 ℎ 

] ≥ 𝐸 

ℎ 
s 

[ 
𝑠 ℎ , 𝐼 ℎ 

𝐰 ℎ |𝐰 ℎ |
] 
, for all 𝐰 ℎ ∈ 𝑈 ℎ . (44)

roof. The proof follows the same arguments as can be found in
51,55,89] . □

We need the following variational derivatives in Section 4.1 : 

𝐧 ℎ 𝐸 

ℎ 
s 
[
𝑠 ℎ , 𝐰 ℎ ; 𝐯 ℎ 

]
= ∫Ω 𝑠 2 

ℎ 
∇ 𝐰 ℎ ∶ ∇ 𝐯 ℎ 𝑑𝐱, (45)

𝑠 ℎ 
𝐸 

ℎ 
s 
[
𝑠 ℎ , 𝐰 ℎ ; 𝑧 ℎ 

]
= ∫Ω

(
𝑏 0 ∇ 𝑠 ℎ ⋅ ∇ 𝑧 ℎ + 𝑠 ℎ 𝑧 ℎ |∇ 𝐰 ℎ |2 )𝑑𝐱, (46)

hich are defined for any s h , z h ∈ S h , w h , v h ∈ U h . Moreover, we use
he following convex splitting of 𝜓( s h ) [90,91] : 

 𝑐 ( 𝑠 ℎ ) = 

𝐴 

′ + 𝐷 

′

2 
𝑠 2 
ℎ 
, 

𝜓 𝑒 ( 𝑠 ℎ ) = 

𝐷 

′

2 
𝑠 2 
ℎ 
+ 

𝐵 

′

3 
𝑠 3 
ℎ 
− 

𝐶 

′

4 
𝑠 4 
ℎ 

⇒ 𝜓( 𝑠 ℎ ) ≡ 𝜓 𝑐 ( 𝑠 ℎ ) − 𝜓 𝑒 ( 𝑠 ℎ ) , (47)

here D ′ > 0 is chosen sufficiently large, i.e. if 𝑠 ℎ ∈ [−1∕2 , 1] , then 𝜓 c 

nd 𝜓 e are both convex functions if D ′ > 0 is large enough. Hence, the
ariational derivative of the double well potential is given by 

𝑠 ℎ 
𝐸 

ℎ 
dw [ 𝑠 ℎ ; 𝑧 ℎ ] ∶= ∫Ω 𝜓 

′( 𝑠 ℎ ) 𝑧 ℎ 𝑑𝐱 = ∫Ω
(
𝜓 

′
𝑐 ( 𝑠 ℎ ) − 𝜓 

′
𝑒 ( 𝑠 ℎ ) 

)
𝑧 ℎ 𝑑𝐱, (48)

here, for time-stepping purposes, the s h variable can be lagged in the
 

′
𝑒 term (see (52)). 

. Computing local minimizers 

We begin by describing a robust, monotonically energy decreasing
radient flow scheme for the discrete Ericksen system (see [55,57] ), fol-
owed by our domain decomposition (DD) approach that speeds up con-
ergence by isolating defects. A heuristic explanation of the DD method
s given in Section 4.3 . A variant of this gradient flow scheme is used
or the uniaxially constrained LdG model (28) (see [63,64] for more
etails). 

.1. Discrete gradient flow 

We present a gradient descent type scheme for finding discrete (lo-
al) minimizers of 𝐸 

ℎ 
erk 
[
𝑠 ℎ , 𝐧 ℎ 

]
; it is a variant of the minimization algo-

ithms that can be found in [41,42,55,57] . To this end, because of the
nit length constraint at the nodes in N h (see (34) ), we introduce the
pace of discrete tangential variations: 

 

⟂
ℎ 
( 𝐧 ℎ ) = { 𝐯 ℎ ∈ 𝑈 ℎ ∶ 𝐯 ℎ ( 𝑥 𝑖 ) ⋅ 𝐧 ℎ ( 𝑥 𝑖 ) = 0 for all nodes 𝑥 𝑖 ∈  ℎ } , (49)

s well as an effective inner product a n ( · , · ) on 𝑈 

⟂
ℎ 
( 𝐧 ℎ ) and an inner

roduct a ( · , · ) on S . 
s h 
The minimization scheme for 𝐸 

ℎ 
erk [ 𝑠 ℎ , 𝐧 ℎ ] is an alternating direction,

emi-implicit method, where energy decreasing steps are taken with re-
pect to n h and s h consecutively. The following result guarantees that
his scheme is energy decreasing. 

heorem 13 (energy decrease) . Suppose the mesh  ℎ is non-obtuse,

amely (40) holds. Then, for any 𝛿t > 0, the iterate ( 𝑠 𝑘 +1 
ℎ 

, 𝐧 𝑘 +1 
ℎ 

) of

lgorithm 1 exists and satisfies 

 

ℎ 
erk 
[
𝑠 𝑘 +1 
ℎ 

, 𝐧 𝑘 +1 
ℎ 

] ≤ 𝐸 

ℎ 
erk 
[
𝑠 𝑘 
ℎ 
, 𝐧 𝑘 

ℎ 

]
− 

1 
𝛿𝑡 

𝑎 𝑠 
(
𝑠 𝑘 +1 
ℎ 

− 𝑠 𝑘 
ℎ 
, 𝑠 𝑘 +1 

ℎ 
− 𝑠 𝑘 

ℎ 

)
. (53) 

quality holds if and only if ( 𝑠 𝑘 +1 
ℎ 

, 𝐧 𝑘 +1 
ℎ 

) = ( 𝑠 𝑘 
ℎ 
, 𝐧 𝑘 

ℎ 
) (a local minimizer). 

roof. The proof follows a similar argument as in [55, Thm. 4.2] . □

.2. Domain decomposition approach 

We describe an alternating Schwarz method, with overlapping sub-
omains, for enhancing the gradient flow scheme in Section 4.1 . Our
ocus is on a small number of sub-domains, say two, but we present it
or any number of sub-domains, say M . Let {Ω∗ 

𝑖 
} 𝑀 

𝑖 =1 be an overlapping

ecomposition of Ω, i.e. ∪𝑀 

𝑖 =1 Ω
∗ 
𝑖 
= Ω where each Ω∗ 

𝑖 
is an open subset of

. Moreover, we define the sub-domain boundaries Γ𝑖 ∶= 𝜕Ω∗ 
𝑖 
. 

Next, define  

𝑘 
𝑖 

[
( 𝑠 ℎ , 𝐧 ℎ ) 

]
to be k iterations of Algorithm 1 , with ini-

ial guess ( s h , n h ), but restricted to sub-domain Ω∗ 
𝑖 
. In other words, we

eplace Ω with Ω∗ 
𝑖 

in the gradient flow, and impose boundary condi-
ions on Γi , whose boundary values are given by the initial guess: ( s h ,
 h ) restricted to Γi . Moreover,  

𝑘 
[
( 𝑠 ℎ , 𝐧 ℎ ) 

]
denotes the gradient flow

lgorithm on Ω with boundary conditions imposed on Γ. The variable

ub-domain Schwarz method we consider is the following. 

emark 14. If the sub-domains are fixed throughout all iterations, and
f 𝑘 𝑖 = ∞, for 𝑖 = 1 , ..., 𝑀, then Algorithm 2 becomes the classic contin-
ous Schwarz alternating method, where each sub-problem is solved
xactly. 

The main purpose of introducing this domain decomposition (DD)
ethod is to isolate regions that contain defects, i.e. the singular set (3) .
umerical experience shows that the speed of the (weighted) gradient
ow is dictated by the motion of defects. Therefore, the procedure for
etermining the sub-domains is based on 𝑠 𝑙 

ℎ 
(the degree of orientation

arameter). The first sub-domain captures the singular region and the
emaining sub-domains simply partition the “regular ” region. 
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Fig. 1. Illustration of how defects impede gradient flow 

scheme in Algorithm 1 (one dimensional example). The 
presence of a defect tightly couples n h and s h . Since they 
are updated in separate steps, updating n h is limited by s h 
and vice-versa (see blue arrows). 

Algorithm 2 Alternating Schwarz method for the Ericksen model. 

Set integers 𝑘 1 , 𝑘 2 , ..., 𝑘 𝑀 

> 0 . Given ( 𝑠 ℎ , 𝐧 ℎ ) 0 ≡ ( 𝑠 0 
ℎ 
, 𝐧 0 

ℎ 
) in 𝑆 ℎ ( 𝑔 ℎ ) ×

𝑁 ℎ ( 𝐪 ℎ ) , iterate the following procedure for 𝑙 ≥ 0 : 

1. Determine an overlapping sub-domain decomposition {Ω∗ 
𝑖 
} 𝑀 

𝑖 =1 
from 𝑠 𝑙 

ℎ 
using (56). Note that we suppress the dependence of 

{Ω∗ 
𝑖 
} 𝑀 

𝑖 =1 on 𝑙. 
2. For 𝑖 = 1 , 2 , ..., 𝑀 do: 

(a) Let ( 𝑠 ℎ , 𝐧 ℎ ) 
𝑙+ 𝑖 

𝑀 ∶=  

𝑘 𝑖 
𝑖 

[
( 𝑠 ℎ , 𝐧 ℎ ) 

𝑙+ 𝑖 −1 
𝑀 

]
, i.e. run the sub- 

domain gradient flow. 
(b) Update: 

( 𝑠 ℎ , 𝐧 ℎ ) 
𝑙+ 𝑖 

𝑀 ∶= 

⎧ ⎪ ⎨ ⎪ ⎩ 
( 𝑠 ℎ , 𝐧 ℎ ) 

𝑙+ 𝑖 
𝑀 , on Ω∗ 

𝑖 
, 

( 𝑠 ℎ , 𝐧 ℎ ) 
𝑙+ 𝑖 −1 

𝑀 , on Ω ⧵Ω∗ 
𝑖 
. 

(54) 

3. Goto 1. 
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Define the following general sets of nodes in terms of s h 

 ℎ ( 𝑎, 𝑏 ) ∶= 

{
𝐱 𝑖 ∈  ℎ ∣ 𝑎 ≤ |𝑠 ℎ ( 𝐱 𝑖 ) | ≤ 𝑏 

}
, 

 ℎ ( 𝑎, 𝑏, 𝑟 ) ∶= 

{
𝐱 𝑖 ∈  ℎ ∣ dist ( 𝐱 𝑖 ,  ℎ ( 𝑎, 𝑏 ) ) ≤ 𝑟 

}
, (55) 

here b > a ≥ 0, r ≥ 0, and consider the following two domain decom-
osition ( 𝑀 = 2 ): 

 ℎ, 1 ∶=  ℎ 

(
𝑎 1 , 𝑏 1 , 𝑟 1 

)
∪
{
𝐱 𝑖 ∈  ℎ ∣ 𝑠 ℎ changes sign on some 𝑇 ∋ 𝐱 𝑖 

}
, 

 ℎ, 2 ∶=  ℎ 

(
𝑎 2 , 𝑏 2 , 𝑟 2 

)
, 

Ω∗ 
𝑗 ∶= 

{
𝑇 ∈  ℎ ∣ 𝑇 contains a point 𝐱 𝑖 ∈  ℎ,𝑗 

}
, for 𝑗 = 1 , 2 , (56) 

here the constants a 1 , a 2 , b 1 , b 2 , r 1 , r 2 are chosen to ensure Ω∗ 
1 , Ω

∗ 
2 are

on-empty, and have some overlap. Basically, we choose the constants
o that Ω∗ 

1 , which contains the defect region, is much smaller than Ω∗ 
2 .

n Section 5 , we explore different choices of these constants. 
The iteration numbers k 1 , k 2 are chosen to reduce the overall com-

uting time. Since Ω∗ 
1 is a region much smaller than Ω∗ 

2 , k 1 can be much
arger than k 2 and still allow Step 2(a) of Algorithm 2 to take the same
mount of time for each sub-domain. The advantage of this is that apply-
ng more iterations in the singular region ensures the defect will move
loser to its equilibrium position, than with the standard (non-DD) ap-
roach, for the same computational effort. In Section 5 , we explore dif-
erent choices for k 1 and k 2 . 

emark 15. A variant of the gradient flow scheme, Algorithm 1 , is used
or the uniaxially constrained LdG model (28) (see [63,64] for more
etails). Moreover, the DD approach for (28) is exactly the same, since
t is based on the degree of orientation parameter s h which has the same
eaning in both models. 

.3. Heuristic explanation for speedup 

Fig. 1 illustrates why the gradient flow scheme may perform slowly
for simplicity, we consider the problem in one dimension). If the direc-
or field n is forced to have a defect because of boundary conditions,
h 
hen s h will develop a degenerate region in one or two iterations (see left
ide of Fig. 1 ), because the scheme is energy decreasing. However, dur-
ng subsequent iterations, the n h and s h variables are tightly coupled near
he defect. In other words, when computing Step 1(a) of Algorithm 1 ,
 h is held fixed, which means the discontinuity in n h (the defect) can-
ot move too far from where s h is nearly zero. This is because the term

Ω 𝑠 2 
ℎ 
|∇ 𝐧 ℎ |2 𝑑𝑥 in the energy would be very large if the defect had moved

o a region where s h is well away from zero. Since the scheme is energy
ecreasing, this cannot happen. Similarly, when computing Step 2 of
lgorithm 1 , n h is held fixed, which means that the degenerate region
f s h cannot move far from the defect in n h . We emphasize that this
ssue is exacerbated when the mesh size decreases because the term

Ω 𝑠 2 
ℎ 
|∇ 𝐧 ℎ |2 𝑑𝑥 is more singular. 

Clearly, updating n h and s h separately is not optimal in terms of con-
ergence rate to a minimizer. However, the gradient flow scheme is
xtremely robust, which is a feature we would like to preserve given
he non-linear, non-convex, and degenerate nature of the models. This
s what inspired the DD approach in Section 4.2 . It is clear that the
ight coupling is only present in a relatively small region surrounding
he defect. So it is natural to use more iterations of the gradient flow
n the “small ” sub-domain containing the defect in order to move the
efect further along toward a minimizer. Our numerical experiments in
ection 5 validate this intuition. 

emark 16. If there is no defect present in the problem, then the gradi-
nt flow scheme performs efficiently. For smooth solutions, the scheme
onverges to a minimizer in about 10 to 15 iterations. This is because we
se weighted (e.g. H 

1 ( Ω)) inner products for the gradient flow, which
ct as effective “pre-conditioners ” that eliminate any “stiffness ” when
olving the linear systems. Thus, no additional acceleration is necessary
n this case. 

However, a weighted gradient flow (a linear concept) cannot remove
he stiffness induced by defects because of their non-linear and degener-
te nature. Other techniques, such as Newton’s method, are also prob-
ematic because the solutions are not smooth; even with finite h , one
ust provide an extremely good initial guess to have any hope of con-

ergence. 

. Numerical results 

We explore the DD approach of Section 4.2 for both the Ericksen
odel and the uniaxially constrained Q -tensor model. The examples
e use all exhibit defects of differing types. In particular, we illustrate

he DD approach for different choices of sub-domain size and iteration
ount. 

We implemented our method using the Matlab/C++ finite element
oolbox FELICITY [92] . For all 3-D simulations, we used the algebraic
ulti-grid solver (AGMG) [93–96] to solve the linear systems for up-
ating n h and s h . In 2-D, we simply used the “backslash ” command in
atlab. 

In all experiments, Ω∗ 
1 contains the singular region. After some exper-

mentation, we found that it was best to choose Ω∗ 
2 ≡ Ω and set k 2 ≡ 1,

.e. for each outer iteration of the gradient flow, we solve in the singular
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Fig. 2. Point defect at its equilibrium state 
( Section 5.2.1 ). Left: director n is shown colored 
according to the degree of orientation s ; the mini- 
mum value of s is 9 . 384 × 10 −2 . Right: a view of the 
sub-domain Ω∗ 

1 in black. 
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Table 1 

Error (in 𝓁 ∞) between the final result with 0 iterations and 4, 8 iterations, 
respectively ( Section 5.2.1 ). 

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B) 

s 2.541928E-07 2.541928E-07 2.541928E-07 2.541928E-07 

u 2.859279E-07 2.859279E-07 2.859279E-07 2.859279E-07 
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egion Ω∗ 
1 several times, followed by one solve over the entire domain.

urthermore, in all cases (except Section 5.3.2 ), we first run 10 itera-
ions of the standard gradient flow scheme over the entire domain so
hat the s variable can be used to identify the singular region. For each
xperiment, we list the inner products a n ( · , · ) and a s ( · , · ) used in
lgorithm 1 . 

In measuring the convergence performance, we use the scalar s vari-
ble, and 𝐮 = 𝑠 𝐧 for the Ericksen model (recall (8) ) and 𝐔 = 𝑠 𝚯 for the
niaxial LdG model (recall (31) ). Using n (or 𝚯) is not appropriate be-
ause they are not very regular. 

.1. Choice of double well 

In two and three dimensions ( 𝑑 = 2 , 3 ), the double well potential sat-
sfies 

 

∗ ≈ 0 . 7 , 𝜓( 𝑠 ∗ ) = 0 , 𝜓(0) = 1 , 𝜓( 𝑠 ) ∝ 𝑠 4 , for 𝑠 → −1∕( 𝑑 − 1) , +1 . 
(57)

or numerical convenience, we do not modify 𝜓 to diverge at 𝑠 =
1∕( 𝑑 − 1) , +1 ; none of the simulations ever exhibited s h near the phys-

cal bounds, so this is acceptable. 
In two dimensions, the double-well potential, with convex splitting,

s given by 

( 𝑠 ) = 𝜓 𝑐 ( 𝑠 ) − 𝜓 𝑒 ( 𝑠 ) 

∶= (26 . 20577 𝑠 2 + 1) − (−4 . 1649313 𝑠 4 + 30 . 2874 𝑠 2 ) . 

n three dimensions, the double-well potential is given by 

( 𝑠 ) = 𝜓 𝑐 ( 𝑠 ) − 𝜓 𝑒 ( 𝑠 ) 

∶ = (36 . 7709 𝑠 2 + 1) − (−7 . 39101 𝑠 4 + 4 . 51673 𝑠 3 + 39 . 27161 𝑠 2 ) . 

.2. The Ericksen model 

.2.1. A point defect in 2-D 

We simulate a point defect moving to the center of the domain
 Ω is the unit square). The time-step is 𝛿𝑡 = 1 . 0 , the maximum mesh
ize is ℎ = 0 . 00913533 , and the inner products are 𝑎 𝐧 ( 𝐧 , 𝐯 ) = ( 𝐧 , 𝐯 ) +
 . 5 
(
( 𝑠 𝑘 ) 2 ∇ 𝐧 , ∇ 𝐯 

)
(where s k is known), and 𝑎 𝑠 ( 𝑠, 𝑧 ) = ( 𝑠, 𝑧 ) + 0 . 5 ( ∇ 𝑠, ∇ 𝑧 ) .

e set 𝑏 0 = 1 , 𝜖dw = 0 . 2 , and impose the following Dirichlet boundary
onditions for s and n 

 = 𝑠 ∗ , 𝐧 = 

( 𝑥, 𝑦 ) − (0 . 5 , 0 . 5) |( 𝑥, 𝑦 ) − (0 . 5 , 0 . 5) | , on Γ ∶= 𝜕Ω. (58)

nitial conditions on Ω for the gradient flow are: 𝑠 = 𝑠 ∗ and a point defect
ocated at (0.7167,0.2912). Fig. 2 depicts the equilibrium solution. 
Fig. 3 shows the convergence to equilibrium versus the run-time for
ifferent choices of the parameters in the DD approach. The singular
ub-domain Ω∗ 

1 is defined by 

 1 = 0 , 𝑏 1 = 0 . 1 , and 𝑟 1 = 0 . 2 , or 0 . 3 . (59) 

he number of (inner) iterations used in Ω∗ 
1 was 𝑘 1 = 0 , 4, or 8. Con-

ergence for each iteration case (0, 4, 8) was measured with respect to
he final result for that case. Table 1 shows the error between the final
esult of the 0 iteration case and the final results of the 4 and 8 iteration
ases. The DD approach shows a clear speed-up. 

.2.2. A saturn-ring like defect in 3-D 

The domain Ω is taken to be a long rectangular “tube ” (vertically ori-
nted) with a spherical hole at its center (see [57] for a full description
f the domain). The boundary of Ω partitions into two disjoint connected
ieces 𝜕Ω = Γ𝑖 ∪ Γ𝑜 , where Γo is the outer part of the tube, and Γi is the
oundary of the inner spherical hole. 

The time-step is 𝛿𝑡 = 1 . 0 , the mesh size is ℎ = 0 . 0785036 , and the in-
er products are 𝑎 𝐧 ( 𝐧 , 𝐯 ) = ( 𝐧 , 𝐯 ) + 0 . 5 

(
( 𝑠 𝑘 ) 2 ∇ 𝐧 , ∇ 𝐯 

)
(where s k is known),

nd 𝑎 𝑠 ( 𝑠, 𝑧 ) = ( 𝑠, 𝑧 ) + 0 . 5 ( ∇ 𝑠, ∇ 𝑧 ) . We set 𝑏 0 = 1 , 𝜖dw = 0 . 3 , and impose the
ollowing Dirichlet boundary conditions 

 = 𝝂, on Γ𝑖 , 𝑠 = 𝑠 ∗ , on 𝜕Ω, (60) 

nd n smoothly interpolates between (0 , 0 , −1) 𝑇 and (0, 0, 1) T on Γo . The
nitial conditions in Ω for the gradient flow are: 𝑠 = 𝑠 ∗ and 

 ( 𝑥, 𝑦, 𝑧 ) = (0 , 0 , −1) 𝑇 , if 𝑧 < 0 , 

 ( 𝑥, 𝑦, 𝑧 ) = (0 , 0 , +1) 𝑇 , if 𝑧 ≥ 0 . 

ig. 4 depicts the equilibrium solution. 
Fig. 5 shows the convergence to equilibrium versus the run-time for

ifferent choices of the parameters in the DD approach. The singular
ub-domain Ω∗ 

1 is defined by 

 1 = 0 , 𝑏 1 = 0 . 25 , and 𝑟 1 = 0 . 25 , or 0 . 5 . (61) 

he number of (inner) iterations used in Ω∗ 
1 was 𝑘 1 = 0 , 4, or 8. Con-

ergence for each iteration case (0, 4, 8) was measured with respect to
he final result for that case. Table 2 shows the error between the final
esult of the 0 iteration case and the final results of the 4 and 8 iteration
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Fig. 3. Ericksen point defect convergence results for s and u ( Section 5.2.1 ) using the 𝓁 ∞ norm of the error. Plot (A) corresponds to 𝑟 1 = 0 . 2 ; Plot (B) corresponds to 
𝑟 1 = 0 . 3 . Number of iterations is for the singular sub-domain Ω∗ 

1 . 

Fig. 4. Ericksen version of the Saturn ring defect at its equi- 
librium state ( Section 5.2.2 ). Left: director n is shown on a 
vertical slice through Ω colored according to the degree of 
orientation s ; the minimum value of s is 0.1057. The spheri- 
cal inclusion is shown and the sub-domain Ω∗ 

1 is depicted in 
black. Right: an oblique view of the same vertical slice with 
the 𝑠 = 0 . 2 iso-surface shown. 

Table 2 

Error (in 𝓁 ∞) between the final result with 0 iterations and 4, 8 iter- 
ations, respectively ( Section 5.2.2 ). 

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B) 

s 1.450184E-05 1.451180E-05 0.071109 1.450584E-05 

u 4.153856E-05 4.156694E-05 0.167288 4.155104E-05 

c  

m  

c  

w  

v

5

5

 

d  

s  

0  

W  
ases. The DD approach achieves some speed-up here over the standard
ethod, but not as dramatic as in Section 5.2.1 . Moreover, Table 2 indi-

ates that a different minimizer was found for the case of 8 sub-iterations
ith 𝑟 1 = 0 . 25 (A). Note that the minimization problem (11) is not con-
ex; indeed, LC problems typically exhibit multiple minima. 

.3. The uniaxially constrained Q -Model 

.3.1. A +1∕2 defect in 2-D 

We simulate a +1∕2 degree defect moving to the center of the
omain ( Ω is the unit square). The time-step is 𝛿𝑡 = 0 . 01 , the mesh
ize is ℎ = 0 . 00913533 , and the inner products are 𝑎 𝐧 ( 𝐧 , 𝐯 ) = ( 𝐧 , 𝐯 ) +
 . 5 
(
( 𝑠 𝑘 ) 2 ∇ 𝐧 , ∇ 𝐯 

)
(where s k is known), and 𝑎 𝑠 ( 𝑠, 𝑧 ) = ( 𝑠, 𝑧 ) + 0 . 5 ( ∇ 𝑠, ∇ 𝑧 ) .

e set 𝑏 = ( 𝑑 − 1)∕ 𝑑 = 1∕2 , 𝜂 = 0 . 25 , and impose the following Dirich-
0 B 
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Fig. 5. Ericksen Saturn ring defect convergence results for s and u ( Section 5.2.2 ) using the 𝓁 ∞ norm of the error. Plot (A) corresponds to 𝑟 1 = 0 . 25 ; Plot (B) 
corresponds to 𝑟 1 = 0 . 5 . Number of iterations is for the singular sub-domain Ω∗ 

1 . 

Fig. 6. A +1∕2 degree defect at its equilibrium state 
( Section 5.3.1 ). Left: director n (as a line-field) is 
shown colored according to the degree of orientation 
s ; the minimum value of s is 6 . 071 × 10 −3 . Right: a view 

of the sub-domain Ω∗ 
1 in black. 

l

𝑠

𝜃  

w  

f  

+  

l
 

d  

s

𝑎  

Table 3 

Error (in 𝓁 ∞) between the final result with 0 iterations and 4, 8 
iterations, respectively ( Section 5.3.1 ). 

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B) 

s 0.00561450 0.00501270 0.00574467 0.00497920 

U 0.00491533 0.00445426 0.00505201 0.00459453 

T  

v  

t  
et boundary conditions for s and n 

 = 𝑠 ∗ , 𝐧 ( 𝑥, 𝑦 ) = ( cos 𝜃, sin 𝜃) ⊤, 

( 𝑥, 𝑦 ) = (1∕2) ̃arctan ( 𝑥 − 0 . 5 , 𝑦 − 0 . 5) , on Γ ∶= 𝜕Ω, (62)

here ãrctan ∶ ℝ 

2 ⧵ {0} → [− 𝜋, 𝜋] is the four quadrant inverse tangent
unction. Initial conditions on Ω for the gradient flow are: 𝑠 = 𝑠 ∗ and a
1∕2 degree defect located at (0.7167,0.2912). Fig. 6 depicts the equi-

ibrium solution. 
Fig. 7 shows the convergence to equilibrium versus the run-time for

ifferent choices of the parameters in the DD approach. The singular
ub-domain Ω∗ 

1 is defined by 

 1 = 0 , 𝑏 1 = 0 . 1 , and 𝑟 1 = 0 . 2 , or 0 . 3 . (63)
he number of (inner) iterations used in Ω∗ 
1 was 𝑘 1 = 0 , 4, or 8. Con-

ergence for each iteration case (0, 4, 8) was measured with respect to
he final result for that case. Table 3 shows the error between the final
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Fig. 7. Uniaxial LdG +1∕2 degree defect convergence results for s and U ( Section 5.3.1 ) using the 𝓁 ∞ norm of the error. Plot (A) corresponds to 𝑟 1 = 0 . 2 ; Plot (B) 
corresponds to 𝑟 1 = 0 . 3 . Number of iterations is for the singular sub-domain Ω∗ 
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Table 4 

Error (in 𝓁 ∞) between the final result with 0 iterations and 4, 8 
iterations, respectively ( Section 5.3.2 ). 

Iter 4 (A) Iter 4 (B) Iter 8 (A) Iter 8 (B) 

s 0.0128284 0.000379576 0.0161736 0.000596018 

U 0.0128879 0.00220264 0.0178509 0.00392691 

t  

r  

c  

m  

i  

a  

m  

(

6

 

d  

l  

e  

s  

o  

t  

f  

n

esult of the 0 iteration case and the final results of the 4 and 8 iteration
ases. The DD approach achieves some speed-up here over the standard
ethod, but not as dramatic as in Section 5.2.1 . Moreover, the errors

n Table 3 indicate that the converged solutions are close, but not ex-
ct. Furthermore, Fig. 7 indicates that using fewer sub-iterations, but a
arger sub-domain, gives better performance (contrary to Fig. 3 ). 

.3.2. The Saturn-ring defect in 3-D 

The domain Ω is the same as in Section 5.2.2 . The time-step is
𝑡 = 0 . 001 , the mesh size is ℎ = 0 . 0785036 , and the inner products
re 𝑎 𝐧 ( 𝐧 , 𝐯 ) = 

(
( 𝑠 𝑘 ) 2 ∇ 𝐧 , ∇ 𝐯 

)
(where s k is known), and 𝑎 𝑠 ( 𝑠, 𝑧 ) = ( 𝑠, 𝑧 ) +

 ∇ 𝑠, ∇ 𝑧 ) . We set 𝑏 0 = ( 𝑑 − 1)∕ 𝑑 = 2∕3 , 𝜂B = 0 . 3 , and impose the follow-
ng Dirichlet boundary conditions 

 = 𝝂, on Γ𝑖 , 𝐧 = (0 , 0 , 1) 𝑇 , on Γ𝑜 , 𝑠 = 𝑠 ∗ , on 𝜕Ω. (64) 

he initial conditions in Ω for the gradient flow are: 𝑠 = 𝑠 ∗ and 𝐧 =
0 , 0 , 1) 𝑇 . 

The equilibrium solution is shown in Fig. 8 . The structure of the di-
ector field is not the same as in Fig. 4 ; this is a consequence of the direc-
or being non-orientable. In Fig. 8 , the cross-section of the director (line)
eld over the defect region clearly exhibits a −1∕2 degree point defect,
hich is consistent with experimental evidence [97] of the Saturn-ring;

ee [98] for an analytical solution. 
Fig. 9 shows the convergence to equilibrium versus the run-time for

ifferent choices of the parameters in the DD approach. The singular
ub-domain Ω∗ 

1 is defined by 

 1 = 0 , 𝑏 1 = 0 . 25 , and 𝑟 1 = 0 . 25 , or 0 . 5 . (65) 

he number of (inner) iterations used in Ω∗ 
1 was 𝑘 1 = 0 , 4, or 8. Con-

ergence for each iteration case (0, 4, 8) was measured with respect to
he final result for that case. Table 4 shows the error between the final
esult of the 0 iteration case and the final results of the 4 and 8 iteration
ases. The DD approach achieves some speed-up here over the standard
ethod, but not as dramatic as in Section 5.2.1 . Moreover, the errors

n Table 3 indicate that the converged solutions are close, but not ex-
ct. Using a larger sub-domain appears to give a solution that is a better
atch. This could also be due to the fact that the minimization problem

32) is not convex, thus exhibiting multiple minima. 

. Conclusions 

We presented a domain decomposition approach to accelerate gra-
ient flow schemes for a special class of degenerate elliptic models of
iquid crystal equilibrium states. The key idea is to apply more gradi-
nt flow steps in a small region that contains the degenerate part of the
olution, which is computationally cheaper than updating the solution
ver the entire domain. We emphasize that applying Newton’s method
o these degenerate models is not at all robust. Indeed, the initial guess
or a Newton solver must be extremely close to the solution, which is
ever the case in practice. 
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Fig. 8. Uniaxial LdG version of the Saturn ring defect 
at its equilibrium state ( Section 5.3.2 ). Left: director 
n (as a line field) is shown on a vertical slice through 
Ω colored according to the degree of orientation s ; the 
minimum value of s is 9 . 303 × 10 −2 . The spherical in- 
clusion is shown and the sub-domain Ω∗ 

1 is depicted in 
black. Right: an oblique view of the same vertical slice 
with the 𝑠 = 0 . 2 iso-surface shown. 

Fig. 9. Uniaxial LdG Saturn ring defect convergence results for s and U ( Section 5.3.2 ) using the 𝓁 ∞ norm of the error. Plot (A) corresponds to 𝑟 1 = 0 . 25 ; Plot (B) 
corresponds to 𝑟 1 = 0 . 5 . Number of iterations is for the singular sub-domain Ω∗ 
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The gradient flow schemes considered in this paper use an alternat-
ng direction approach, i.e. where we fix s and update n (or 𝚯) and
ice-versa. This splitting of the variables leads to a kind of non-standard
stiffness ” in the equations when defects are present. Our domain de-
omposition approach provides a way to augment the gradient flow
cheme in a way to partially account for the non-linear/non-smooth
tiffness caused by the degeneracy of defects. Note that when defects
re not present, the gradient flow schemes converge to a minimizer in
bout 10 to 15 iterations without any domain decomposition technique.

The amount of acceleration varied between the two models, with the
niaxial LdG model benefiting a bit less. This is partially due to the fact
hat the uniaxially constrained LdG model is more complicated than the
ricksen model. This means the assembly of the discrete finite element
atrices is more time-consuming in the uniaxial LdG model than in Er-

cksen. In order to obtain a reduction in computational run-time, one
eeds to take full advantage of having a smaller linear system to solve
n the degenerate region, i.e. only assemble the necessary contributions
o the matrix and reuse the known sparsity structure. 

The performance of the DD approach presented here, with respect to
hanges in discretization parameters, has not been fully explored. The
umber of outer iterations (i.e. solving over the whole domain) is cer-
ainly reduced with the DD approach, but the total computational time
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ay not be improved. This is at least partly due to our implementation
ot being fully optimized. Again, assembly of the finite element matrices
hould be highly optimized to take advantage of this approach. Further-
ore, since both models have non-convex energies, there can be some

ssue of convergence to a particular minimizer. But this is a typical issue
n these models and is present regardless of what method is used to find
he minimizer. 

The DD technique can be combined with parallelization, such as
hen solving over the whole domain, i.e. a fixed decomposition of the
ntire domain can be used. Solving on the singular region could also be
one in parallel, but there are issues of load balancing or of redistribut-
ng the degenerate region to the sub-processors. Other improvements of
ur technique could be to use more sub-domains, but more theoretical
nderstanding of the method is needed to determine how best to parti-
ion the domain. Another option is to abandon the gradient flow scheme
n the singular region, and use a global optimizer instead. If the singular
egion is not too large, then the added cost of a global optimizer could
e mitigated. 
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