
Technical note

Intra-session reliability of local dynamic stability of walking
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Abstract

While local dynamic stability measures have been successfully used to characterize walking stability, they require long continuous

walking data, which may be difficult to obtain from a clinical population. We investigated the amount of walking data necessary to obtain

reliable measures of local dynamic stability. Twenty healthy adults walked on a motorized treadmill at their self-selected speed for three trials

of 5 min each. Trunk motion was used to construct a 12-dimensional state space comprised of the linear and angular positions and velocities.

Mean divergence of locally perturbed trajectories was calculated as a measure of local dynamic stability using the first 1–5 min of data from

each trial. Exponential divergence rates were quantified. Divergence was also parameterized using a double-exponential function. Intra-class

correlation coefficients ICC(2,1) were calculated for each divergence measure for each trial length. ICC(2, 1) values increased with trial

length, and reached 0.5–0.9. Good reliability was obtained for short-term measures for trial lengths of 2 and 3 min, but 5 min was not adequate

to estimate the long-term coefficients based on a single trial.
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1. Introduction

Local dynamic stability has been used to study the

dynamic stability of walking. Slower walking speeds

exhibited by those with diabetic neuropathy compared to

healthy adults may be an effective strategy to improve

stability [1,2]. Stability during gait varies with walking

speed separately from variability [3]. Stability during

standing and walking are not correlated [4]. This method

can assess dynamic stability without having to induce slips

or trips which may be dangerous in certain populations [5,6].

While these approaches show potential as a clinical

measure, estimating local dynamic stability requires that

data be obtained from long continuous walking trials [7].

However, this may not be useful for testing patients who

cannot walk for a long period due to pathologies or injuries.
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In this study, to determine the amount of walking data

necessary to obtain a reliable measure of local dynamic

stability, the reliability of local divergence metrics as a

function of trial length was calculated.
2. Methods

Twenty healthy volunteers ages 18–73 (mean age 40)

participated in this study after giving informed consent

approved by the University of Texas Institutional Review

Board. This wide age range was selected to study a

potentially wide range of stability. Subjects were screened

using a health-history questionnaire, and those with recent

leg injuries, neuromuscular pathologies, and medications

that could affect gait were excluded.

The subjects walked on a level treadmill

(56 cm � 172 cm belt size, Desmo S model, Woodway

USA, Waukesha, WI) for three trials of 5 min each, resting at

least 2 min between trials to prevent fatigue. Subjects

walked at their preferred speed, which was determined using

a protocol described in [3]. A 3 m � 2.4 m (w � h) blue
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Fig. 1. Schematic representation of state space construction and local dynamic stability analysis for a single trial. (a) These states are combined to form the

system’s trajectory in state space (three states are shown for illustrative purposes). (b) Expanded view of a typical local region. A small perturbation moves the

system at S(t) to its closest neighbor S(t*). Local divergence is computed by measuring the Euclidean distances between the subsequent points, denoted dj(i).

This is repeated over all points of the system trajectory in state space, and then averaged. (c) Exponential divergence rates were quantified by calculating the

slope between 0 and 1 stride ðl�SÞ and between 4 and 10 strides ðl�LÞ of the mean log divergence curve. (d) A double-exponential function was used to

parameterize the mean divergence curve.
screen was placed in front of the subjects to control visual

input. Subjects wore a safety harness attached to an external

support to prevent fall injuries. Trunk movements were

sampled at 60 Hz using a VICON-612 system (Oxford

Metrics, Oxford, UK). A rigid-body trunk model was

defined by six markers placed on the left and right acromion

processes and scapulae, and the 1st and 10th thoracic

vertebral bony landmarks. We studied the motions of the

trunk segment because over half of the body mass is located

above the pelvis, which greatly affects the stability of the

rest of the body [8]. A single researcher performed all

marker placements and other experimental setups. Linear

motions of the trunk were defined from the 3D excursions of

the average location of all six markers, to minimize the

effects of measurement noise and non-rigid behavior

(bending, twisting, etc.). Rotational motions were defined

using yaw–pitch–roll (Z–y–x) convention Cardan angles

[4,9].

To account for the different units between linear and

angular measures, both linear and angular displacements

were demeaned and normalized to unit variance. Linear and

angular velocities were then calculated from the normalized

displacements using the three-point difference formula.

These positions and velocities made up a 12-dimensional

state space that fully described the dynamics of the trunk

[4,9] (Eq. 1):

SðtÞ ¼ ½ x; y; z; ẋ; ẏ; ż; u;f;c; u̇; ḟ; ċ � (1)
where x, y, and z represent normalized linear displacements,

ẋ; ẏ; and ż represent linear velocities, u, f, c represent

normalized angular displacements, and u̇; ḟ; ċ represent

angular velocities.

Subtle variations in the walking surface, visual or other

sensory inputs, or neuromuscular noise provide small

perturbations to the locomotor system [10]. Local dynamic

stability of walking is defined as the quantitative response of

the system’s state variables (i.e., positions, angles, velo-

cities) to these small perturbations [11]. When a system is

perturbed while moving through its state space, the system

will be ‘‘bumped’’ to a nearby part of the state space. The

system’s new trajectory may converge back or diverge away

from the original trajectory. We estimate local dynamic

stability by measuring, on average, how quickly the system

will converge toward or diverge away from the original

trajectory (Fig. 1).

For each point S(t) at time t on the state space trajectory of

the system, the nearest neighboring point S(t*) on an

adjacent trajectory was determined, forming a pair of nearest

neighbors [7]. For each pair j, the Euclidean distances dj(i)

were calculated between each pair of points after each

discrete time step i (i.e. iDt seconds, where Dt = 1/60 s) on

the two trajectories (Fig. 2). This process was repeated for all

points of the system trajectory with its nearest neighbor, and

the dj(i) for each pair of points were averaged to produce the

mean divergence as a function of time. The mean divergence

behavior was parameterized in two ways.
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Fig. 2. Mean linear divergence curves from a typical subject. Each curve

represents one trial (a) divergence curves calculated from 1 min of data and

(b) divergence curves from 5 min of data. As trial length increases, the

divergence curves show more consistency across trials.
The first method describes the divergence behavior in a

log scale hln dj(i)i, time-normalized to the average stride

time [1–3,12]. The slope of the mean log divergence curves

were calculated as a measure of exponential rate of

divergence (Fig. 1c). The slopes, l�S and l�L were calculated

between 0 and 1 strides, and between 4 and 10 strides [1–

3,12].

The second method quantifies the tendency of

neighboring trajectories to converge or diverge in a linear

scale (Fig. 1d) [4]. The mean linear divergence curves

were parameterized using a double-exponential function

Eq. (2):

hd jðiÞi ¼ A� BSe�t=ts � BLe�t=tL (2)

where tS and tL (tL� tS) represent the time constants that

describe how quickly hdj(i)i approach the divergence limits.

BS and BL determine how large of an effect each different

timescale will have on hdj(i)i. This double-exponential fit

Eq. (2) was used as an extension of the exponential diver-

gence method described above, but does not require a

subjective decision regarding where to compute these values

[1,4,12].

To investigate the effects of trial length, mean log

divergence slopes and mean divergence fit parameters were
computed from the first 1–5 min of data from each of the

three trials. This yielded three values of l�S and l�L as well as

A, BS, tS, BL, and tL for each trial length per subject. The

dependent measures were averaged across the three trials for

each subject at each trial length, and a repeated-measures

ANOVA was performed to test for any systematic

differences in the parameters between the trial lengths.

Dunnett’s comparisons were performed to compare values at

5 min to shorter trial lengths.

To quantify intra-session reliability, intra-class correla-

tion coefficients, ICC(2,1), were calculated for each

dependent measure for each trial length using the three

trials from 20 subjects Eq. (3):

ICCð2; 1Þ ¼ BMS� EMS

BMSþ ðk � 1ÞEMSþ kðRMS�EMSÞ
n

(3)

where BMS was the between-subjects mean square, EMS

the error mean square, and RMS the between-raters

mean square, k the number of raters (or trials), and n was

the number of subjects tested, from a repeated-measure

ANOVA [13]. ICC(2,1) is used in inter-rater reliability

studies where the raters (or trials) are a representative

sample from a population of raters [13]. Statistical

analyses were performed using Minitab (Minitab, State

College, PA).
3. Results

Both mean log divergence and mean divergence curves

showed an initial steep rise and then a more gradual rise,

similar to previous studies (Figs. 1c and d and 2) [1,3,4,12].

Age was not correlated with divergence parameters

(r2 � 0.26; p > 0.05). As trial duration increased, the fit

parameters increased slightly, and between-subjects var-

iance stabilized except for BL (Fig. 3). Parameters from 3

and 4 min trials were not significantly different from 5 min

trials, except for l�S where values from 1–4 min trial

durations were different from the 5 min trials, and for ts

where no differences were found (Fig. 3).

For l�S ICC(2,1) reached 0.75 by the third minute while

increasing, while for l�L it leveled off around 0.6 by the third

minute. For the double-exponential measures, A and BS both

reached a plateau around the second minute, tS and BL

leveled off around the third minute, while tL steadily

increased. Short-term measures l�S BS and tS reached

ICC(2,1) of 0.8 and 0.9 by the second minute, but the other

parameters did not (Fig. 4).
4. Discussion

It has been suggested that ICC values above 0.75 are

indicative of good reliability [13]. This study demonstrated

that good reliability can be obtained for the short-term
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Fig. 3. Mean (�S.D.) of local dynamic stability measures as a function of

trial length. Variability across subjects became consistent as trial length was

increased. All measures seemed to approach a plateau as trial length

increased. Significant differences (Dunnett’s 95% confidence interval) in

the parameters are shown with horizontal parenthesis.

Fig. 4. ICC(2,1) values as a function of trial length. Across three walking

trials, short-term measures showed good reliability with only 2 and 3 min of

data, while long-term measures did not. (a) Short- and long-term slopes of

the mean log divergence curves and (b) double-exponential fit parameters

(Eq. (2)) of the mean divergence curves.
parameters with a trial of 2 and 3 min, but trial lengths up to

5 min were not sufficient to achieve good reliability for the

long-term measures using just one single trial. Longer or

multiple trials may be necessary to obtain reliable estimates

of the long-term parameters. The ICC values in this were

comparable to many other gait measures with ICC values of

0.67–0.95 [14,15].

The difference in reliability in the short- and long-term

measures may be due to the fit criterion. The least-squares

method used to fit the mean divergence penalizes r2 more for

deviations in the short-term parameters than long-term

parameters. Or, the short-term measures may describe

stability that is consistent within a person, while the long-

term measures reflect the variability within a person among

the three trials.

While this study provided preliminary values of

reliability of local dynamic stability during walking, only

one session of three trials was collected per subject, which

does not allow the calculation of inter-session reliability.

This study also included only healthy subjects, and not

enough older subjects to see the effects of age on local

dynamic stability. Future work will assess the local dynamic

stability in other clinical populations who are at risk of falls

such as older adults, and also establish within-session and

inter-session reliability using longer walking trials and by

averaging across multiple trials.
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