SCHRÖDINGER OPERATORS ON THE WIENER SPACE

ICHIRO SHIGEKAWA*

Abstract. We discuss a Schrödinger operator on the Wiener space of the form $L - V$, L being the Ornstein-Uhlenbeck operator and V is a potential function. We determine the domain of $L - V$ and show the spectral gap under the assumption of exponential integrability of the negative part of V.

1. Introduction

We consider a Schrödinger operator $A = L - V$ on an abstract Wiener space (B, H, μ). Here L is the Ornstein-Uhlenbeck operator and V is a scalar potential. Our goal is to determine the domain of $L - V$. To be precise, we will show that $\text{Dom}(A) = \text{Dom}(L) \cap \text{Dom}(V)$ under a suitable condition.

This kind of problem was considered in the context of scalar field of quantum field theory. Essential self-adjointness was discussed by Segal [5], B. Simon [10] and others. Issues of determining the domain and the spectral gap was considered by Glimm and Jaffe [1], Simon and Høegh-Krohn [11], etc. Their methods depend on the hypercontractivity but we use logarithmic Sobolev inequality, which is known to be equivalent with the hypercontractivity. To determine the operator domain we use the intertwining properties of operators.

The organization of the paper is as follows. In §2, we discuss the essential self-adjointness of a Schrödinger operator. We use the perturbation theory and the logarithmic Sobolev inequality. We also give a refinement of the logarithmic Sobolev inequality in terms of the generator itself. In §3, we determine the domain of the Schrödinger operator. The intertwining property of operators plays an important role. Last, in §4, we discuss the spectral gap of the operator.

2. Essential self-adjointness

We first fix notations. Let (B, H, μ) be an abstract Wiener space, i.e., B is a Banach space, H is a Hilbert space imbedded in B, and μ is the Wiener measure with the characteristic function

$$
\int_B e^{i(x, \varphi)} \mu(dx) = \exp\left\{ -\frac{1}{2} |\varphi|^2_{H^*} \right\}, \quad \varphi \in B^* \subset H^*.
$$

(2.1)

2000 Mathematics Subject Classification. 60H07, 81Q10, 47D08.

Key words and phrases. Schrödinger operator, Wiener space, Ornstein-Uhlenbeck operator, logarithmic Sobolev inequality, essentially self-adjoint, generator domain.

* This research was partially supported by Grant-in-Aid for Scientific Research (B), No. 17340036, Japan Society for the Promotion of Science.
Let $\mathcal{F}C_0^\infty$ be the set of all functions $f: B \to \mathbb{R}$ such that there exist $n \in \mathbb{N}$, $F \in C_0^\infty(\mathbb{R}^n)$ and $\varphi_1, \ldots, \varphi_n \in B^*$ with

$$f(x) = F(\langle x, \varphi_1 \rangle, \ldots, \langle x, \varphi_n \rangle).$$

(2.2)

We suppose that a Schrödinger operator $L - V$ is defined on $L^2(\mu)$, where L is the Ornstein-Uhlenbeck operator, and V is a scalar potential. We first consider when $L - V$ is essentially self-adjoint on $\mathcal{F}C_0^\infty$. To do this, we use the theory of positive generalized function (see, e.g., [3]). We denote the L^2-norm by $\| \cdot \|$ and the operator norm by $\| \cdot \|_{op}$. We divide V into the positive part $V_+ := \max\{V, 0\}$ and the negative part $V_- := \max\{-V, 0\}$. We have the following

Proposition 2.1. We assume that $V_+ \in L^2$. For the negative part, we assume that there exist $0 < a < 1, b > 0$ such that

$$\|V_- f\|_2 \leq a\|Lf\|_2 + b\|f\|_2.$$

(2.3)

Then $-L + V$ is essentially self-adjoint on $\mathcal{F}C_0^\infty$.

Proof. From (2.3), we have

$$\|V_- (e - L)^{-1} f\|_2 \leq a\|L(e - L)^{-1} f\|_2 + b\|(e - L)^{-1} f\|_2.$$

Further, by using the spectral decomposition, we have $\|L(e - L)^{-1}\|_{op} \leq 1, \|(e - L)^{-1}\|_{op} \leq 1/c$ and thereby

$$\|V_- (e - L)^{-1} f\|_2 \leq \left(a + \frac{b}{c}\right)\|f\|_2.$$

Take c to be large so that $a + \frac{b}{c} < 1$. Since L is symmetric, we also have $\|(e - L)^{-1}\|_{op} < 1$. From the assumption $V_+ \in L^2$, we can take $p, p' > 1$ so that $\frac{1}{p} + \frac{1}{p'} = 1$ and $V_+ \in L^{p'}$.

c$-L+V$ is clearly well-defined on $\mathcal{F}C_0^\infty$. To prove the essential self-adjointness, it suffices to show that

$$\text{Ker}(c - L + V)^* = \{0\}.$$

(2.4)

Now we take any $g \in \text{Ker}(c - L + V)^*$. Then we have, for all $f \in \mathcal{F}C_0^\infty$,

$$\langle(c - L + V) f, g\rangle = 0.$$

(2.5)

Let q' be a conjugate exponent of p'. Then $Vg \in L^{q'}$. By noting that $\mathcal{F}C_0^\infty$ is dense in $\mathcal{F}_{2,p}$, we can see that (2.5) holds for all $f \in \mathcal{F}_{2,p}$. Let $\{T_t\}$ be a semigroup generated by $L - c$. Since $\mathcal{F}_{2,p'}$ is invariant under T_t, we have, for all $f \in \mathcal{F}_{2,p'}$,

$$\langle T_t f, g \rangle = \langle f, T_t g \rangle = \int_0^t \frac{d}{ds} \langle T_s f, g \rangle ds = \int_0^t \langle (L - c) T_s f, g \rangle ds = \int_0^t (T_s f, V g) ds.$$

Recalling that $\mathcal{F}_{2,p'}$ is dense in $L^{p'}$ and using the continuity, we have

$$\langle f, T_t g \rangle = \langle f, T_t g \rangle \int_0^t (T_s f, V g) ds, \quad \forall f \in L^{p'}.$$

In particular, taking $u \in (\mathcal{F}_{2,p'})_+, f = u \text{sgn} g \in L^{p'}$, it follows that

$$\langle u \text{sgn} g, T_t g \rangle = \langle u, |g| \rangle = \int_0^t (T_s (u \text{sgn} g), V g) ds.$$
Since the semigroup \(\{ T_t \} \) preserves the positivity, we have
\[
\langle u, T_t | g \rangle \geq \langle u, \text{sgn } g T_t g \rangle
\]
and therefore
\[
\langle u, T_t | g \rangle - \langle u, | g \rangle \geq \int_0^t \langle T_s (u \text{sgn } g), V g \rangle ds.
\]
Dividing the both hand by \(t \) and letting \(t \to 0 \),
\[
\langle u, (L - c) | g \rangle \geq \langle u, \text{sgn } g, V g \rangle = \langle u, V | g \rangle \geq -\langle u, V_- | g \rangle.
\]
Here \((L - c) | g \rangle \) is regarded a generalized function as an element of \(\mathcal{F}^{-2,q}_- \). Since the identity above holds for all \(u \in (\mathcal{F}^{2,p}_-) \), it follows that \((L - c) | g \rangle + V_- | g \rangle \in (\mathcal{F}^{-2,q}_-) \).

On the other hand, for \(f \in \mathcal{F}^{2,2} \), we have
\[
\langle V_- | g \rangle, f \rangle = | \langle | g \rangle, V_- f \rangle | \leq |||g|||_2 |||V_- f|||_2 \leq |||g|||_2 (|||a|||_2|L f|||_2 + b||f|||_2).
\]
Then we can see that \(V_- | g \rangle \in \mathcal{F}^{2,2} \). The same is true for \((L - c) | g \rangle \) and hence we have \((L - c) | g \rangle + V_- | g \rangle \in \mathcal{F}^{2,2} \). Now, using [3, Proposition 3.5], we can get \((L - c) | g \rangle + V_- | g \rangle \in (\mathcal{F}^{2,2}_-) \), which means
\[
(c - L) | g \rangle \leq V_- | g \rangle \quad \text{in } \mathcal{F}^{2,2}.
\]
Since \((c - L)^{-1} \) preserves the positivity, we have
\[
|||g||| \leq ||(c - L)^{-1}V_- | g \rangle
\]
and further
\[
|||g|||_2 \leq ||(c - L)^{-1}V_- | g \rangle|||_2 \leq ||(c - L)^{-1}V_- |||_o||g|||_2.
\]
Since \(c \) was chosen so that \(||(c - L)^{-1}V_- |||_o < 1 \), we have \(g = 0 \). This shows (2.4) and the proof is complete. \(\square \)

We now have to give a sufficient condition for (2.3). To do this, we make use of the logarithmic Sobolev inequality. It is usually written in terms of bilinear form, but the generator itself is involved in our case. So we have to rewrite it a bit.

In general setting, the (defective) logarithmic Sobolev inequality for a Dirichlet form \(\mathcal{E} \) is written as
\[
\int_B |f|^2 \log(|f|/||f||_2) \, d\mu \leq \alpha \mathcal{E}(f, f) + \beta ||f||_2^2.
\]
(2.6)

Here \((B, \mu) \) is a general measure space. We also denote the associated generator by \(L \) (not specify to the Ornstein-Uhlenbeck operator. For the Dirichlet form \(\mathcal{E} \), we assume the local property and the existence of square field operator, i.e.,
\[
\mathcal{E}(f, g) = \int_B \Gamma(f, g) \, d\mu
\]
(2.7)
and \(\Gamma \) has the derivation property. In the case of an abstract Wiener space, \(\Gamma(f, f) = |\nabla f|^2 \), \(\nabla \) being a gradient operator. We have the following theorem.
Theorem 2.2. Assume that the logarithmic Sobolev (2.6) holds. Then, for any \(\varepsilon > 0 \), there exist positive constants \(K_1, K_2 \) such that

\[
\int_B f^2 \log^2 f \, d\mu \leq \alpha^2 (1 + \varepsilon) \| Lf \|_2^2 + K_1 + K_2 \| f \|_2^6. \tag{2.8}
\]

Proof. Let \(k \) be a function on \(\mathbb{R} \) such that \(k \) is a concave and even function of class \(C^2 \) with \(k(0) = 0 \) and

\[
k(x) = x \log^{1/2} x, \quad x \geq e.
\]

Since \(k'(x) = \log^{1/2} x + \frac{1}{2 \log^{1/2} x} \), we have

\[
\log k(x) = \log x + \log \log^{1/2} x,
\]

\[
k'(x)^2 = \log x + \frac{1}{4 \log x} + 1.
\]

Hence

\[
k'(x)^2 \leq \log k(x) \tag{2.9}
\]

for sufficiently large \(x \). We also note that

\[
k(x)k'(x) = x \left(\frac{1}{2} + \log |x| \right) \tag{2.10}
\]

for \(|x| \geq e \). By the logarithmic Sobolev inequality (2.6), we have

\[
\int_B g^2 \log |g| \, d\mu \leq -\alpha \int_B g Lg \, d\mu + \beta \| g \|_2^2 + \| g \|_2^2 \log \| g \|_2.
\]

Set \(g = k(f) \). Then, by the local property of \(\mathcal{E} \),

\[
Lg = k'(f) Lf + k''(f) \Gamma(f, f).
\]

Hence

\[
\int_B (k(f))^2 \log k(f) \, d\mu
\]

\[
\leq -\alpha \int_B k(f) \{ k'(f) Lf + k''(f) \Gamma(f, f) \} \, d\mu + \beta \| k(f) \|_2^2 + \| k(f) \|_2^2 \log \| k(f) \|_2
\]

\[
\leq \alpha \int_B k(f) |k'(f)| \| Lf \| \, d\mu + \beta \| k(f) \|_2^2 + \| k(f) \|_2^2 \log \| k(f) \|_2.
\]

Now, for large \(x \), by using (2.9),

\[
k(x)^2 \log k(x) \geq k(x)^2 k'(x)^2.
\]

For small \(x \), by taking \(C_1 > 0 \) large enough, we have

\[
k(x)^2 \log k(x) \geq k(x)^2 k'(x)^2 - C_1.
\]
Combining them gives
\[
\int_B k(f)^2 k'(f)^2 \, d\mu - C_1
\leq \int_B k(f)^2 \log k(f) \, d\mu
\leq \alpha \int_B k(f) |k'(f)| |L_f| \, d\mu + \beta \|k(f)\|_2 + \|k(f)\|^2 \log \|k(f)\|_2
\leq \frac{1}{2} \int_B k(f)^2 |k'(f)|^2 \, d\mu + \frac{\alpha^2}{2} \int_B |L_f|^2 \, d\mu
+ \beta \|k(f)\|_2 + \|k(f)\|^2 \log \|k(f)\|_2.
\]

Here, in the last line, we used the inequality \(ab \leq \frac{1}{2}(a^2 + b^2)\). Thus
\[
\int_B k(f)^2 k'(f)^2 \, d\mu \leq 2C_1 + \alpha^2 \int_B |L_f|^2 \, d\mu + 2\beta \|k(f)\|_2 + 2\|k(f)\|^2 \log \|k(f)\|_2.
\]

Recall that \(k(x)k'(x) = x(\frac{1}{2} + \log |x|)\) for large \(x\). Then, by changing constants, we have
\[
\int_B f^2 \left(\frac{1}{2} + \log |f|\right)^2 \, d\mu
\leq C_2 + \alpha^2 \int_B |L_f|^2 \, d\mu + 2\beta \|k(f)\|_2 + 2\|k(f)\|^2 \log \|k(f)\|_2.
\]

Again, by changing constant, we have
\[
\int_B f^2 \log^2_+ \left|f\right| \, d\mu \leq C_3 + \alpha^2 \int_B |L_f|^2 \, d\mu + 2\beta \|k(f)\|_2 + 2\|k(f)\|^2 \log \|k(f)\|_2. \tag{2.11}
\]

The essential part has been done. Therefore, it remains to estimate \(\|k(f)\|_2^2\) and \(\|k(f)\|^2 \log \|k(f)\|_2\). We first need to compute \(\|k(f)\|_2^2\).
\[
\|k(f)\|^2_2 \leq E[f^2 \log_+ |f|] + C_4.
\]

Here we denote the integral with respect to \(\mu\) by \(E[\quad]\). We use this convention from now on. We may assume \(C_4 \geq 1\). If \(r \geq 1\), then \(\log(x+r) \leq \log_+ x + 2r\) \((x \geq 0)\). Therefore
\[
\|k(f)\|^2 \log \|k(f)\|_2 \leq E[f^2 \log_+ |f| + C_4] \log E[f^2 \log_+ |f| + C_4]
\leq E[f^2 \log_+ |f| + C_4] \{\log E[f^2 \log_+ |f|] + \log(2C_4)\}
\leq 2E[f^2 \log_+ |f|] \log_+ E[f^2 \log_+ |f|] + C_5.
\]

By the Schwarz inequality,
\[
E[f^2 \log_+ |f|] = E[f \cdot f \log_+ |f|] \leq \{E[f^2] E[f^2 \log_+ |f|]\}^{1/2}.
\]
Combining this with the inequality \(x \log x \leq x^{3/2} \) leads to
\[
E[f^2 \log_+ |f|] \log_+ E[f^2 \log_+ |f|] \\
\leq \{E[f^2]E[f^2 \log_+ |f|]\}^{1/2} \log_+ \{E[f^2]E[f^2 \log_+ |f|]\}^{1/2} \\
\leq \{E[f^2]E[f^2 \log_+^2 |f|]\}^{3/4} \\
= E[f^2]^{3/4} E[f^2 \log_+^2 |f|]^{3/4}.
\]

Further, by using the inequality
\[
xy \leq \frac{x^4}{4} + \frac{y^{4/3}}{3},
\]
we have, for \(\delta > 0 \),
\[
E[f^2 \log_+ |f|] \log_+ E[f^2 \log_+ |f|] \leq \frac{E[f^2]^3}{4\delta^4} + \frac{\delta^{4/3} E[f^2 \log_+^2 |f|]}{4^3 3}.
\]

Then, for any \(\varepsilon > 0 \), there exist constants \(C_6, C_7 \) such that
\[
||k(f)||_2^2 \log ||k(f)||_2 \leq \varepsilon E[f^2 \log_+^2 |f|] + C_6 + C_7 E[f^2]^3.
\]

We can estimate \(||k(f)||_2^2 \) in a similar way. By combining this with (2.11), we can get the desired inequality. \(\square \)

Set \(\Phi(x) = x \log_+ x \). Then
\[
\phi(x) = \Phi'(x) = \log_+^2 x + 2 \log_+ x.
\]

Further
\[
\phi(e^{\sqrt{2}\Phi^{-1}} - 1) = x,
\]
which yields that the inverse function \(\psi \) of \(\phi \) is given by
\[
\psi(x) = e^{\sqrt{x}2} - 1.\]

From this, we can easily see that \(\psi(x) \leq e^{\sqrt{x}} \). Let \(\Psi \) be an integral of \(\psi \). \(\Phi \) is called a complimentary function. \(\Phi \) can be estimated as
\[
\Psi(x) = \int_0^x \psi(y)dy \leq \int_0^x e^{\sqrt{y}}dy = \int_0^x 2\sqrt{y}(e^{\sqrt{y}})dy \\
= 2\sqrt{x}e^{\sqrt{x}} - \int_0^x \frac{1}{\sqrt{y}}e^{\sqrt{y}}dy \leq 2\sqrt{x}e^{\sqrt{x}}.
\]

Thus, by the Hausdorff-Young inequality, we have
\[
xy \leq \Phi(x) + \Psi(y) \leq x \log_+^2 x + 2\sqrt{y}e^{\sqrt{y}} \tag{2.12}
\]

Now we are ready to give a sufficient condition for the inequality (2.3) by means of the logarithmic Sobolev inequality.

Theorem 2.3. Assume the same conditions in Theorem 2.2. Suppose that a non-negative function \(v \) satisfies
\[
e^v \in L^{2\alpha} = \bigcup_{p > 2\alpha} L^p. \tag{2.13}
\]
Then, there exist positive constant $a < 1$ and b such that
\[\|vf\|_2 \leq a\|Lf\|_2 + b\|f\|_2. \quad (2.14) \]

Proof. Take $\varepsilon > 0$ so that $e^\varepsilon \in L^{2(1+2\varepsilon)}$. From the inequality (2.12), we have
\[4(1 + \varepsilon)^2 \alpha^2 \|vf\|_2^2 = E[4(1 + \varepsilon)^2 \alpha^2 v^2 f^2] \]
\[\leq E[f^2 \log^2 f + 4(1 + \varepsilon)\alpha ve^{2(1+\varepsilon)\alpha v}] \]
\[\leq 4E[f^2 \log^2 f] + 4(1 + \varepsilon)\alpha E[ve^{2(1+\varepsilon)\alpha v}]. \]

Now the inequality (2.7) leads to
\[4(1 + \varepsilon)^2 \alpha^2 \|vf\|_2^2 \leq 4\alpha^2 (1 + \varepsilon)\|Lf\|_2^2 + 4K1 + 4K2\|f\|_2^6 + 4(1 + \varepsilon)\alpha E[ve^{2(1+\varepsilon)\alpha v}]. \]

By taking $f/\|f\|_2$ instead of f, we have
\[4(1 + \varepsilon)^2 \alpha^2 \|vf\|_2^2 \leq 4\alpha^2 (1 + \varepsilon)\|Lf\|_2^2 + 4K1 + 4K2 + 4(1 + \varepsilon)\alpha E[ve^{2(1+\varepsilon)\alpha v}]. \]

Thus
\[\|vf\|_2 \leq \frac{1}{\sqrt{1+\varepsilon}} \|Lf\|_2 + \left\{ \frac{K1 + K2}{(1 + \varepsilon)^2\alpha^2} + \frac{1}{(1 + \varepsilon)\alpha} E[ve^{2(1+\varepsilon)\alpha v}] \right\} \|f\|_2. \]

Taking the square and using the inequality $\sqrt{x+y} \leq \sqrt{x} + \sqrt{y}$, we have
\[\|vf\|_2 \leq \frac{1}{\sqrt{1+\varepsilon}} \|Lf\|_2 + \left\{ \frac{K1 + K2}{(1 + \varepsilon)^2\alpha^2} + \frac{1}{(1 + \varepsilon)\alpha} E[ve^{2(1+\varepsilon)\alpha v}] \right\}^{1/2} \|f\|_2, \]
which is the desired result. \qed

On an abstract Wiener space, it is known that the inequality (2.6) holds for $\alpha = 1$, $\beta = 0$ (Gross’ inequality):
\[\int_B |f|^2 \log(|f|/\|f\|_2) \, d\mu \leq \int_B |\nabla f|^2 \, d\mu. \quad (2.15) \]

Now, using the previous result, we have

Theorem 2.4. For a Schrödinger operator $L - V$ on an abstract Wiener space (B, H, μ), assume that $V_+ \in L^2$ where $V_+ := \max\{V, 0\}$, $V_- := \max\{-V, 0\}$. Then $L - V$ is essentially self-adjoint on F_C.

3. The domain of a Schrödinger operator

In this section, we consider an issue of the domain of a Schrödinger operator of the form $A = L - V + W$. In §2, we have decomposed the potential into positive and negative part. Here we decompose the potential as follows:

(A.1) $V \geq 1$ and $V \in L^2$.
(A.2) W is non-positive and there exists a constant $0 < \alpha < 1$ such that $e^W \in L^{2/\alpha}$.
Though the way of decomposing the potential is different from the one in previous section, it is not hard to see that we can apply the result of §2 and so we have that $\mathfrak{A} = L - V + W$ is essentially self-adjoint on $\mathcal{F}C_0^\infty$. We fix the constant α in (ii) throughout this section. We only remark that α can be chosen as close as 1.

To determine the domain, we use the intertwining property of operators; to be precise, we make use of an operator A satisfying

$$ pV\mathfrak{A} = \mathfrak{A}pV. $$

(3.1)

Let us give a definition of an operator A. Assuming the differentiability, we define a vector field b by

$$ b = \nabla V \frac{1}{2V} = \frac{1}{2} \nabla \log V. $$

(3.2)

We further define a bilinear form as

$$ E_A(f, g) = (\nabla f, \nabla g) + ((V - W - |b|^2)f, g). $$

(3.3)

Note that this bilinear form is not symmetric. By the following formal computation

$$ (f, b \cdot \nabla g) = (\nabla^*(f b), g) = (f \nabla^* b - b \cdot \nabla f, g), $$

an associated generator is given by

$$ A = L - 2b \cdot \nabla + (\nabla^* b - V + W + |b|^2). $$

(3.4)

We remark that this is not a rigorous expression because we do not assume the differentiability of b and so $\nabla^* b$ is not well-defined. (3.4) is merely a formal expression. A is defined through the bilinear form (3.3).

We now give an sufficient condition so that E_A defines a closed bilinear form whose symmetric part is bounded from below. The problem is what kind of regularity of b should be imposed. We consider the symmetric part and skew-symmetric part separately. The symmetric part is given by

$$ \hat{E}_A(f, g) = (\nabla f, \nabla g) + ((V - W - |b|^2)f, g), $$

and the skew-symmetric part is

$$ \hat{E}_A(f, g) = (b \cdot \nabla f, g) - (f, b \cdot \nabla g). $$

We denote a bilinear form added by λ times the inner product of L^2 by

$$ \hat{E}_{A - \lambda}(f, g) = (\nabla f, \nabla g) + ((V - W - |b|^2)f, g) + \lambda(f, g). $$

We first consider the symmetric part $(\nabla f, \nabla g) + ((V - W - |b|^2)f, g)$. We use a general theory of perturbation: the KLMN theorem for bilinear form (see, e.g., Reed-Simon [4, Theorem X.17]). We regard $W + |b|^2$ as a perturbation of a bilinear form associated to $L - V$:

$$ E_{L - V}(f, g) = (\nabla f, \nabla g) + (Vf, g). $$

The domain of this bilinear form is $\text{Dom}(\nabla) \cap \text{Dom}(\sqrt{V})$. It is well-known that this form is a Dirichlet form.

Though there are many ways to give sufficient conditions, we restrict ourselves to typical ones. One of them is

$$ e^{W + |b|^2} \in L^{2/\alpha}. $$

(3.5)
The other is that there exists a constant $C > 0$ such that

$$|b|^2 \leq \alpha V + C.$$ \hspace{1cm} (3.6)

Then we have the following

Proposition 3.1. In addition to (A.1), (A.2) we assume that either (3.5) or (3.6) is fulfilled. Then there exists a constant β such that

$$((W + |b|^2)f, f) \leq \alpha \mathcal{E}_{L-V}(f, f) + \beta(f, f)$$ \hspace{1cm} (3.7)

and hence

$$(1 - \alpha)\mathcal{E}_{L-V}(f, f) \leq \mathcal{E}_A(f, f) + \beta(f, f) \leq (1 + \alpha)\mathcal{E}_{L-V}(f, f) + \beta(f, f).$$ \hspace{1cm} (3.8)

Therefore \mathcal{E}_A with the domain $\text{Dom}(\mathcal{E}_{L-V}) = \text{Dom}(\nabla) \cap \text{Dom}(\sqrt{V})$ is a closed bilinear form that is bounded from below.

Proof. First we assume (3.5). By the logarithmic Sobolev inequality (2.15) and the Housdorff-Young inequality $xy \leq x \log x - x + e^y$, we have

$$(2/\alpha)((W + |b|^2)f, f) = (2/\alpha)E[(W + |b|^2)f^2]$$

$$\leq E[f^2 \log f^2] - E[f^2] + E[e^{2(W+|b|^2)/\alpha}]$$

$$\leq 2E[|\nabla f|^2] + 2\|f\|_2^2 \log \|f\|_2^2 - \|f\|_2^2 + E[e^{2(W+|b|^2)/\alpha}].$$

Multiplying the both hand by $\alpha/2$, we have

$$((W + |b|^2)f, f) \leq \alpha E[|\nabla f|^2] + \alpha \|f\|_2^2 \log \|f\|_2^2 - \frac{\alpha}{2}\|f\|_2^2 + \frac{\alpha}{2}E[e^{2(W+|b|^2)/\alpha}].$$

Take $f/\|f\|_2$ instead of f. Then we get

$$((W + |b|^2)f, f) \leq \alpha E[|\nabla f|^2] + \frac{\alpha}{2}E[e^{2(W+|b|^2)/\alpha} - 1]\|f\|_2^2$$

$$\leq \alpha \mathcal{E}_{L-V}(f, f) + \frac{\alpha}{2}E[e^{2(W+|b|^2)/\alpha} - 1]\|f\|_2^2.$$

Thus we have obtained (3.7) and the rest is easy form the KLMN theorem.

Second we assume (3.6). By the logarithmic Sobolev inequality and the assumption (A.2), we have

$$(Wf, f) \leq \alpha E[|\nabla f|^2] + \frac{\alpha}{2}E[e^{2W/\alpha} - 1]\|f\|_2^2.$$ \hspace{1cm} (3.9)

Further, by (3.6),

$$(|b|^2f, f) \leq \alpha E[|Vf|^2] + C\|f\|_2^2.$$ \hspace{1cm} (3.10)

By combining them, we can deduce

$$((W + |b|^2)f, f) \leq \alpha \mathcal{E}_{L-V}(f, f) + \left(\frac{\alpha}{2}E[e^{2W/\alpha} - 1] + C\right)\|f\|_2^2.$$

The rest is the same as before. \hfill \Box

We can give a sufficient condition which is a mixture of (3.5) and (3.6), but we do not go into details.

Proposition 3.2. $\mathcal{F}\mathcal{C}_0^\infty$ is dense in $\text{Dom}(\mathcal{E}_A)$.

Proof. By Proposition 3.1, $\text{Dom}(\mathcal{A})$ is the same as the domain of the bilinear form associated with $L - V$. Recall that $L - V$ is essentially self-adjoint in $\mathcal{F}^\infty C_0$, i.e., $\mathcal{F}^\infty C_0$ is dense in $\text{Dom}(L - V)$. Hence $\mathcal{F}^\infty C_0$ is dense in the domain of the bilinear form. This completes the proof.

Let us proceed to the estimate of skew-symmetric part. Assume the inequality (3.7). We impose one of the following conditions on b:

$$e^{\|b\|^2} \in L^{0+}$$

(3.9)

or there exists a constant $C > 0$ such that

$$|b|^2 \leq CV.$$

(3.10)

Proposition 3.3. In addition to (3.7), we assume either (3.9) or (3.10). Then, for sufficiently large λ, there exists a constant $K > 0$ such that

$$|\mathcal{A}(f, g)| \leq K|\mathcal{A}_A - \lambda(f, f)|^{1/2}|\mathcal{A}_A - \lambda(g, g)|^{1/2}. $$

(3.11)

Therefore \mathcal{E}_A satisfies the sector condition.

Proof. We first consider the case that (3.9) is satisfied. We use the logarithmic Sobolev inequality. We only need to estimate $(b \cdot \nabla f, g)$. Take $\epsilon > 0$ so that $e^{\epsilon \|b\|^2} \in L^1$. Then, by the Schwarz inequality,

$$|(b \cdot \nabla f, g)| \leq E[\frac{1}{\epsilon} |\nabla f|^2]^{1/2} E[\epsilon \|b\|^2 g^2]^{1/2}.$$

Further, by using the Housdorff-Young $xy \leq x \log x - x + e^y$, we have

$$E[\epsilon \|b\|^2 g^2] \leq E[g^2 \log g^2] - E|g^2| + E[\epsilon |b|^2]$$

$$\leq 2E[|\nabla g|^2] + \|g\|^2 \log \|g\|^2 - \|g\|^2 + E[\epsilon |b|^2].$$

Now replacing g with $g/\|g\|^2$, we get

$$E[\epsilon |b|^2 g^2] \leq 2E[|\nabla g|^2] + E[\epsilon |b|^2 - 1]\|g\|^2.$$

Hence

$$|(b \cdot \nabla f, g)| \leq \frac{1}{\sqrt{\epsilon}} E[|\nabla f|^2]^{1/2} (2E[|\nabla g|^2] + E[\epsilon |b|^2 - 1]\|g\|^2)^{1/2}.$$

The right hand side can be estimated the norm in \mathcal{E}_A by (3.8) and so can obtain the desired result.

We can also prove it when (3.10) is fulfilled. In fact, it is enough to notice that in the proof above $E[\epsilon |b|^2 g^2]$ can be dominated by $E[CV g^2]$. □

In the sequel, we always assume the conditions (A.1), (A.2). Further we assume either (3.5) or (3.6) so that \mathcal{E}_A is well-defined as a closed bilinear form. Establishing the \mathcal{E}_A, we proceed to an issue of intertwining property. Our next task is to show the following intertwining property:

$$\sqrt{\nabla A} = A \sqrt{\nabla}.$$

But A in (3.4) is merely a formal expression, we prove this in the following form:

$$\mathcal{E}_A(f, \sqrt{\nabla} g) = \mathcal{E}_A(\sqrt{\nabla} f, g). $$

(3.12)
Proposition 3.4. (3.12) holds for \(f, g \in FC_0^\infty \). Moreover, we have, for \(f \in \text{Dom}(\mathfrak{A}) \), \(g \in \text{Dom}(A^*) \),

\[
(\mathfrak{A}f, \sqrt{V}g) = (\sqrt{V}f, A^*g).
\]

(3.13)

Proof. We take any \(f, g \in FC_0^\infty \). Then

\[[\nabla, \sqrt{V}]f = \nabla(\sqrt{V}f) - \sqrt{V}\nabla f = (\nabla \sqrt{V})f = \frac{\nabla V}{2\sqrt{V}}f = \sqrt{V}fb, \]

which means

\[[\nabla, \sqrt{V}]f = \sqrt{V}fb. \]

(3.14)

Using this, we will investigate the commutation relation between \(L \) and \(\sqrt{V} \).

\[
(\nabla f, \nabla(\sqrt{V}g))
\]

\[
= (\nabla f, [\nabla, \sqrt{V}]g) + ([\nabla, \sqrt{V}]f, \nabla g)
\]

\[
= (\nabla f, \sqrt{V}gb) + (\sqrt{V}\nabla f, \nabla g)
\]

\[
= (\sqrt{V}\nabla f, gb) + (\sqrt{V}\nabla f, \nabla g)
\]

\[
= (\sqrt{V}\nabla f, gb) + (\nabla (\sqrt{V}f), gb) + (\nabla (\sqrt{V}f), \nabla g) + (\nabla (\sqrt{V}f), \nabla g)
\]

\[
= -(\sqrt{V}f, gb) + (b \cdot \nabla (\sqrt{V}f), g) - (\sqrt{V}f, \nabla g) + (\nabla (\sqrt{V}f), \nabla g)
\]

\[
= -(b^2\sqrt{V}f, g) + (b \cdot \nabla (\sqrt{V}f), g) - (\sqrt{V}f, b \cdot \nabla g) + (\nabla (\sqrt{V}f), \nabla g).
\]

It is also clear that \(\sqrt{V} \) and \(V - W \) are commutative. Let \(\mathcal{E}_A \) be a bilinear form associated with \(\mathfrak{A} \):

\[
\mathcal{E}_A(f, g) = (\nabla f, \nabla g) + ((V - W)f, g).
\]

(3.15)

Then the commutation relation between \(\sqrt{V} \) and \(\mathfrak{A} \) is obtained as

\[
\mathcal{E}_A(f, \sqrt{V}g) = (\nabla (\sqrt{V}f), \nabla g) + (b \cdot \nabla (\sqrt{V}f), g)
\]

\[- (\sqrt{V}f, b \cdot \nabla g) - (b^2\sqrt{V}f, g) + ((V - W)\sqrt{V}f, g)\]

\[= \mathcal{E}_A(\sqrt{V}f, g).\]

So far, \(f \) and \(g \) are assumed to be taken form \(FC_0^\infty \). We will show that, by taking limit, this holds for \(f \in \text{Dom}(\mathfrak{A}) \), \(g \in \text{Dom}(A^*) \). To do this, we first fix \(f \in FC_0^\infty \). Then we have

\[
-(\mathfrak{A}f, \sqrt{V}g) = \mathcal{E}_A(\sqrt{V}f, g)
\]

(3.16)

for \(g \in FC_0^\infty \). Using Proposition 3.2 and taking limit, we can show that (3.16) holds for \(g \in \text{Dom}(\mathcal{E}_A) \). In particular, if \(g \in \text{Dom}(A^*) \), then

\[
(\mathfrak{A}f, \sqrt{V}g) = (\sqrt{V}f, A^*g) \quad \forall f \in FC_0^\infty.
\]

Now, by noting the essential self-adjointness, we can see that this identity holds for all \(f \in \text{Dom}(\mathfrak{A}) \). This completes the proof.

We are ready to determine the domain of the Schrödinger operator \(\mathfrak{A} \). The method here is to use the intertwining property of operators, which was developed in [8, 9]. The main result in this section is as follows:
Theorem 3.5. We assume the same assumptions as before. Then we have

\[\text{Dom}(\mathfrak{A}) = \text{Dom}(L) \cap \text{Dom}(V). \]

Moreover, for sufficiently large \(\lambda \), there exist positive constants \(K_1, K_2 \) such that

\[K_1 \| (\mathfrak{A} - \lambda) f \|_2 \leq \| Lf \|_2 + \| Vf \|_2 \leq K_2 \| (\mathfrak{A} - \lambda) f \|_2. \quad (3.17) \]

Proof. We use the intertwining property among \((\mathfrak{A}, L^2(B)), (A, L^2(B)) \) and \(\sqrt{V} \).

For \(f \in \text{Dom}(\mathfrak{A}) \), we define a linear functional on \(\text{Dom}(E_A) \) as

\[\Phi(g) = ((\lambda - \mathfrak{A}) f, \sqrt{V} g). \]

Then, by Proposition 3.1, we have

\[|\Phi(g)| \leq \| (\lambda - \mathfrak{A}) f \|_2 \| \sqrt{V} g \|_2 \leq C \| (\lambda - \mathfrak{A}) f \|_2 E_{\lambda - \lambda}(g, g)^{1/2}. \]

Now, by the Lax-Milgram theorem, there exist \(k \in \text{Dom}(E_A) \) such that

\[\Phi(g) = E_{\lambda - \lambda}(k, g). \]

We also note that the norm of \(k \) is estimated as

\[E_{\lambda - \lambda}(k, k)^{1/2} \leq C \| (\lambda - \mathfrak{A}) f \|_2. \quad (3.18) \]

Take any \(g \in \text{Dom}(A) \). By using the intertwining property, we have

\[(\sqrt{V} f, (\lambda - A^*) g) = ((\lambda - \mathfrak{A}) f, \sqrt{V} g) = \Phi(g) = E_{\lambda - \lambda}(k, g) = (k, (\lambda - A^*) g). \]

Since \(g \) can run through \(\text{Dom}(A) \), we can get \(\sqrt{V} f = k \). Now noting Proposition 3.1 and (3.18), we can deduce that

\[\| Vf \|_2 = \| \sqrt{V} k \|_2 \leq E_{L - V}(k, k)^{1/2} \leq C_1 E_{\lambda - \lambda}(k, k)^{1/2} \leq C_2 \| (\lambda - \mathfrak{A}) f \|_2. \]

We also note that, by Theorem 2.3, for \(\alpha < \alpha' < 1 \),

\[\| Wf \|_2 \leq \alpha' \| Lf \|_2 + \beta \| f \|_2. \quad (3.19) \]

Hence, if we take \(f \in \mathcal{F} C_0^\infty \), we have

\[\| Lf \|_2 \leq \| (L - V + W - \lambda) f \|_2 + \| Vf \|_2 + \| Wf \|_2 + \| f \|_2 \]
\[\leq \| (\mathfrak{A} - \lambda) f \|_2 + C_2 \| (\lambda - \mathfrak{A}) f \|_2 + \alpha' \| Lf \|_2 + \beta \| f \|_2 + \| f \|_2, \]

which leads to

\[(1 - \alpha') \| Lf \|_2 \leq (1 + C_2) \| (\lambda - \mathfrak{A}) f \|_2 + (\beta + \lambda) \| f \|_2. \]

This, combined with the essential self-adjointness of \(\mathfrak{A} \), yields that \(\text{Dom}(\mathfrak{A}) \subseteq \text{Dom}(L) \). Thus we have obtained that if \(f \in \text{Dom}(\mathfrak{A}) \), then \(f \in \text{Dom}(L) \cap \text{Dom}(V) \).

The reversed inclusion \(\text{Dom}(L) \cap \text{Dom}(V) \subseteq \text{Dom}(\mathfrak{A}) \) can be seen as

\[\| (L - V + W - \lambda) f \|_2 \leq \| Lf \|_2 + \| Vf \|_2 + \| Wf \|_2 + \| f \|_2 \]
\[\leq \| Lf \|_2 + \| Vf \|_2 + \alpha' \| Lf \|_2 + \beta \| f \|_2 + \| f \|_2, \]

which completes the proof. \(\Box \)
4. Spectral gap of a Schrödinger operator

In this section, we investigate the spectrum of a Schrödinger $\mathfrak{A} = L - V$ on an abstract Wiener space (B, H, μ). We first consider the case that V is bounded. In this case, $L - V$ is a bounded perturbation of L and so it is essentially self-adjoint on \mathcal{F}_{0}^{∞}. We denote the spectrum of \mathfrak{A} by $\sigma(\mathfrak{A})$. We have the following

Theorem 4.1. $l = \sup \sigma(\mathfrak{A})$ is a point spectrum of multiplicity one and the associated eigenfunction can be chosen to be positive. Moreover, the spectrum is discrete on $(l - 1, l]$, i.e., it consists of point spectra of finite multiplicity.

Proof. The spectrum of L is well-known: $\sigma(L) = \{0, -1, -2, \ldots \}$ and the maximal eigenvalue 0 is a point spectrum of multiplicity one and the associated eigenfunction is positive. Therefore, if (B, H, μ) is of finite dimension, then the spectrum of L is discrete and the resolvent operators are compact. Moreover $\mathfrak{A} = L - V$ has a compact resolvent if V is bounded and so the spectrum of \mathfrak{A} is discrete.

To deal with infinite dimensional case, we use an approximation method. Let $\{\varphi_i\}_{i=1}^{\infty} \subseteq B^*$ be a c.o.n.s of H^*. We set $\mathcal{F}_n = \sigma(\varphi_1, \varphi_2, \ldots, \varphi_n)$ and define $V_n = E[V|\mathcal{F}_n]$. Then V_n is uniformly bounded and converges to V a.s. as $n \to \infty$.

Let $\{h_i\}_{i=1}^{\infty}$ be a dual basis of $\{\varphi_i\}$, i.e., $\langle h_i, \varphi_j \rangle = \delta_{ij}$ where δ_{ij} is the Kronecker delta. We set $H_n = \text{span}\{h_1, h_2, \ldots, h_n\}$ and $B_n = \{x \in B: \langle x, \varphi_i \rangle = 0, i = 1, 2, \ldots, n\}$. Then B can be decomposed as a direct sum $B = H_n \oplus B_n$. According to this decomposition, $L - V_n$ can also be decomposed as follows. On H_n, it has of the form $L_n - V_n$, and on B_n it is just the Ornstein-Uhlenbeck operator on B_n. This reveals that the spectrum of $L - V_n$ is discrete on $(\lambda(V_n) - 1, \lambda(V_n))$ where $\lambda(V_n) = \sup \sigma(L - V_n)$.

It remains to show that $L - V_n$ converges to $L - V$ as $n \to \infty$ in the norm resolvent sense.

We denote the resolvents of $L - V_n$ and $L - V$ by $G^{(n)}$ and G, respectively, namely, let $G^{(n)} = (\lambda - L + V_n)^{-1}$ and $G = (\lambda - L + V)^{-1}$. We take λ to be large enough. Then it holds that

$$G - G^{(n)} = G^{(n)}(V - V_n)G.$$

Since λ is large, we may assume that $\|G^{(n)}\|_{op} \leq 1$ and so it suffices to show that $\|(V - V_n)G\|_{op} \to 0$ as $n \to \infty$. By the Hausdorff-Young $xy \leq x \log x - x + e^y$ and the logarithmic Sobolev inequality, we have

$$\|(V - V_n)Gf\|_{2}^{2}$$

$$= E[(V - V_n)^2(Gf)^2]$$

$$\leq \frac{1}{N} E[N(V - V_n)^2(Gf)^2]$$

$$\leq \frac{1}{N} E[(Gf)^2 \log(Gf)^2 - (Gf)^2 + e^{N(V - V_n)^2}]$$

$$\leq \frac{1}{N} \{2E[|\nabla Gf|^2] + \|Gf\|_{2}^{2} \log \|Gf\|_{2}^{2} - \|Gf\|_{2}^{2} + E[e^{N(V - V_n)^2}]\}.$$
Now replacing f with $f/\|Gf\|_2$, we get

$$
\| (V - V_n) Gf \|_2^2 \leq \frac{1}{N} \left\{ 2E[|\nabla Gf|^2] + E[e^{N(V - V_n)^2} - 1] \|Gf\|_2^2 \right\}
\leq \frac{1}{N} \left\{ -2E[(LGf)Gf] + E[e^{N(V - V_n)^2} - 1] \|f\|_2^2 \right\}
\leq \frac{1}{N} \left\{ 2E[(\lambda - L + V)Gf] - \lambda E[(Gf)^2] - E[V(Gf)^2]
+ E[e^{N(V - V_n)^2} - 1] \|f\|_2^2 \right\}
\leq \frac{1}{N} \left\{ 2E[fGf] - \lambda E[(Gf)^2] + E[|V|Gf)^2]
+ E[e^{N(V - V_n)^2} - 1] \|f\|_2^2 \right\}
\leq \frac{1}{N} \left\{ E[f^2] + E[(Gf)^2] + E[|V|Gf)^2]
+ E[e^{N(V - V_n)^2} - 1] \|f\|_2^2 \right\}
\leq \frac{1}{N} \left\{ (2 + \|V\|_\infty) \|f\|_2^2 + E[e^{N(V - V_n)^2} - 1] \|f\|_2^2 \right\}.
$$

Hence

$$
\| (V - V_n) G \|_{\text{op}}^2 \leq \frac{1}{N} \left\{ 2 + \|V\|_\infty + E[e^{N(V - V_n)^2} - 1] \right\}.
$$

Since $V - V_n$ is uniformly bounded and converges to 0 a.s., we can use the Lebesgue dominated convergence theorem and so we obtain

$$
\limsup_{n \to \infty} \|(V - V_n) G\|_{\text{op}}^2 \leq \frac{2 + \|V\|_\infty}{N}.
$$

Since N is arbitrary, it follows that

$$
\lim_{n \to \infty} \|(V - V_n) G\|_{\text{op}} = 0.
$$

Thus we have shown that $G^{(n)}$ converges to G in norm sense, which we wanted. Using the Feynman-Kac formula, we can show that the multiplicity of the maximal eigenvalue is simple and the associated eigenfunction can be taken to be positive by a standard argument. This completes the proof. \(\square\)

Now we proceed to the general case. We consider a operator of the form $A = L - V + W$. We assume the assumptions of the previous section to use Theorem 3.5.

Theorem 4.2. Assume that V, W satisfy the conditions (A.1), (A.2) in §3. We also assume that either (3.5) or (3.6) is fulfilled. Then the spectrum is discrete on $(l - 1, l]$, i.e., it consists of point spectrums of finite multiplicity.

Proof. Define functions V_n, W_n that approximate V, W as follows. Let $\psi_n: \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$
\psi_n(x) =
\begin{cases}
 n + 1, & x \geq n + 2 \\
 x, & |x| \leq n \\
 -n - 1, & x \leq -n - 2
\end{cases}
$$

Then V_n, W_n satisfy the conditions (A.1), (A.2) and the assumptions of the previous section. Therefore, we can apply Theorem 3.5 to $A - A_n$ and obtain

$$
\|(A - A_n) G\|_{\text{op}} \leq \frac{2 + \|V\|_\infty}{N}.
$$

Since $V - V_n$ is uniformly bounded and converges to 0 a.s., we can use the Lebesgue dominated convergence theorem and so we obtain

$$
\limsup_{n \to \infty} \|(A - A_n) G\|_{\text{op}} \leq \frac{2 + \|V\|_\infty}{N}.
$$

Since N is arbitrary, it follows that

$$
\lim_{n \to \infty} \|(A - A_n) G\|_{\text{op}} = 0.
$$

Thus we have shown that $G^{(n)}$ converges to G in norm sense, which we wanted. Using the Feynman-Kac formula, we can show that the multiplicity of the maximal eigenvalue is simple and the associated eigenfunction can be taken to be positive by a standard argument. This completes the proof. \(\square\)
and that $0 \leq \psi'_n \leq 1$. We set

$$V_n = \psi_n(V), \quad W_n = \psi_n(W).$$

As in the case of bounded potential, we set $G^{(n)} = (\lambda - L + V_n - W_n)^{-1}$, $G = (\lambda - L + V - W)^{-1}$ and note that

$$G - G^{(n)} = G(V - V_n - W + W_n)G^{(n)}.$$

We need show the norm convergence of $G - G^{(n)}$ to 0 as $n \to \infty$. By taking λ to be large enough, we may assume that $\|G^{(n)}\|_{op} \leq 1$, $\|G\|_{op} \leq 1$. Take any f, $g \in L^2$. Then

$$(G - G^{(n)})f, g = (G(V - V_n - W + W_n)G^{(n)}f, g)$$

$$= (V - V_n - W + W_nG^{(n)}f, (V + W)Gg).$$

We first estimate the term $(V + W)Gg$. By using (3.10) and (3.19), we have

$$\|(V + W)Gg\|_2 \leq \|VGg\|_2 + \|WGg\|_2$$

$$\leq K_2\|((\mathfrak{A} - \lambda)Gg\|_2 + \alpha\|LGg\|_2 + \beta\|Gg\|_2$$

$$\leq K_2\|g\|_2 + K_2\alpha\|((\mathfrak{A} - \lambda)Gg\|_2 + \beta\|Gg\|_2$$

$$\leq K_2(1 + \alpha)\|g\|_2 + \beta\|g\|_2.$$

Further, by the Hausdorff-Young inequality, $\frac{V - V_n - W + W_n}{V + W}G^{(n)}f$ can be estimated as

$$\left\| \frac{V - V_n - W + W_n}{V + W}G^{(n)}f \right\|_2^2$$

$$= E\left[\frac{(V - V_n - W + W_n)^2}{(V + W)^2} (G^{(n)}f)^2 \right]$$

$$\leq \frac{1}{N} \{ E[(G^{(n)}f)^2 \log(G^{(n)}f)^2 - (G^{(n)}f)^2 + e^{N(V - V_n - W + W_n)^2/(V + W)^2}] \}

$$\leq \frac{1}{N} \{ E[\|\nabla G^{(n)}f\|^2] + \|G^{(n)}f\|^2 \log \|G^{(n)}f\|^2$$

$$- \|G^{(n)}f\|^2 + 1] + E[e^{N(V - V_n - W + W_n)^2/(V + W)^2}] \}.$$

Replacing f with $f/\|G^{(n)}f\|_2$, we have

$$\left\| \frac{V - V_n - W + W_n}{V + W}G^{(n)}f \right\|_2^2$$

$$\leq \frac{1}{N} \{ 2E[\|\nabla G^{(n)}f\|^2] + e^{N(V - V_n - W + W_n)^2/(V + W)^2} - 1] \}$$

$$\leq \frac{1}{N} \{ 2E[\|\nabla G^{(n)}f\|^2] + e^{N(V - V_n - W + W_n)^2/(V + W)^2} - 1] \}.$$
Further, by using (3.17) again, we get
\[
E[\|\nabla G^{(n)} f\|^2] = -(L G^{(n)} f, G^{(n)} f)
\leq \|L G^{(n)} f\|_2 \|G^{(n)} f\|_2
\leq K_2 \| (L - V_n + W_n - \lambda) G^{(n)} f \|_2 \| f \|_2
\leq K_2 \| f \|_2^2.
\]
Here, we must be careful about that (3.10) holds uniformly in n. To see this, note that constants in (3.10) depend on the integrability of e^{W_n} and the estimate of e^{W_n}. Let us consider b_n. Since $b_n = 0$ when $V \geq n + 2$, and $b_n = b$ when $V \leq n$, it is clear that they can be estimated uniformly. When $n \leq V \leq n + 2$, note that
\[
|b_n| = |\nabla V_n|/V_n = \phi_n' |\nabla V|/V_n \leq (|\nabla V|/V)(V/V_n) \leq (|\nabla V|/V)(n + 2)/n.
\]
Then the uniform estimate can be deduced easily.

Thus we have
\[
\|(G - G^{(n)}) f, g\| \leq \{K_2(1 + \alpha) + \beta\} \|g\|_2
\times \frac{1}{N} \left(2K_2 + E[e^{N(V - V_n - W_n)^2/(V + W)^2 - 1}] \right) \| f \|_2
\]
and hence
\[
\|G - G^{(n)}\|_{op} \leq \frac{1}{N} \left(K_2(1 + \alpha) + \beta \right) \left(2K_2 + E[e^{N(V - V_n - W_n)^2/(V + W)^2 - 1}] \right).
\]
Now we let $n \to \infty$ and, by the Lebesgue bounded convergence theorem, we obtain
\[
\limsup_{n \to \infty} \|G - G^{(n)}\|_{op} \leq \frac{2}{N} \{K_2(1 + \alpha) + \beta\} K_2.
\]
Since N is arbitrary, we eventually get
\[
\lim_{n \to \infty} \|G - G^{(n)}\|_{op} = 0,
\]
which is what we wanted. The rest is the same as the previous theorem. The proof is completed. \qed

References

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN

E-mail address: ichiro@math.kyoto-u.ac.jp

URL: http://www.math.kyoto-u.ac.jp/~ichiro