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Abstract. We present several examples where moments of creators and an-
nihilators on an interacting Fock space may be realized as moments of creators
and annihilators on a full Fock module. Motivated by this experience we an-
swer the question, whether such a possibility exists for arbitrary interacting
Fock spaces, in the affirmative sense. We treat the problem in full algebraic
generality. As a by-product, we find a new notion of positivity for ∗–algebras
which allows to construct tensor products of Hilbert modules over ∗–algebras.

Finally, we consider a subcategory of interacting Fock spaces which are
embeddable into a usual full Fock space. We see that a creator a∗(f) on
the interacting Fock space is represented by an operator κ`∗(f), where `∗(f)
is a usual creator on the full Fock space and κ is an operator which does
not change the number of particles. In the picture of Hilbert modules the
one-particle sector is replaced by a two-sided module over an algebra which
contains κ. Therefore, κ may be absorbed into the creator, so that we are
concerned with a usual creator. However, this creator does not act on a Fock
space, but rather on a Fock module.

1. Introduction

In [4] Accardi, Lu, and Volovich proposed the following definition. An interact-
ing Fock space over a Hilbert space is the usual full (or boltzmanian) Fock space
F(H) =

⊕
n∈N0

H⊗n over a Hilbert space H where, however, direct sum and ten-
sor products are understood algebraically, and where the (semi-)inner product on
the n–particle sector H⊗n is rather arbitrary. The creators a∗(f) (f ∈ H) are
the usual ones. Restrictions to the semiinner product arise by the requirement
that each creator a∗(f) should have an adjoint a(f) with respect to the new inner
product. This implies that the creators (and also the annihilators) respect the
kernel of the semiinner product.

This definition was suggested by the observation that in the stochastic limit
of an electron coupled to the electro magnetic field as computed in Accardi, Lu
[3] the limit distribution of the field operators in the vacuum state of the field
and some state on the system space of the electron can be understood as the
vacuum expectation of creators and annihilators on an interacting Fock space. In
the meantime, we know many other examples of interacting Fock spaces; see e.g.
Section 2. We mention the representation space of the renormalized square of
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white noise (see [6, 7, 17, 2]) as proposed in Accardi, Lu and Volovich [5]. The
list of examples can be continued arbitrarily. However, it is not our goal to give
an account of the history of interacting Fock space. The few examples in Sections
2 and 3 are chosen from the didactic point of view.

In analogy with the full Fock space over a Hilbert space (i.e. a two-sided Hilbert
C–module) we may construct the full Fock module over a two-sided Hilbert module;
see Pimsner [13] and Speicher [18].

Wigner’s semi-circle distribution is the central limit distribution of free indepen-
dence and it may be realized by moments of creators and annihilators on the full
Fock space in the vacuum expectation; see Voiculescu [19]. The same is true for
operator-valued free independence (Voiculescu [20]). More precisely, the central
limit distribution of operator-valued free independence may be realized by mo-
ments of creators and annihilators on a suitable full Fock module in the vacuum
conditional expectation; see [18].

Let us return to the QED-example. Already in [3] the idea arose to use the
language of Hilbert modules to understand better the underlying structure. In
fact, the idea is very natural. The limit computed in [3], actually, is the limit of the
vacuum conditional expectation from the algebra of operators on Γ(L2(Rd)) ⊗ S
onto the algebra of operators on S, where S denotes the Hilbert space of the
electron. It is well-known that any completely positive mapping admits a GNS-
representation on a Hilbert module. However, in [3] the limit of the vacuum
conditional expectation was computed only weakly. In [14] Skeide showed that
the limit conditional expectation exists. He pointed out that that GNS-module of
the vacuum conditional expectation is a full Fock module and the moments of the
limits of the field operators are those of creators and annihilators in the vacuum
conditional expectation of this Fock module.

The basis for the construction of a full Fock module is a two-sided Hilbert
module; see Section 3. In fact, it was the correct left multiplication discovered
in [14] which allowed to identify the GNS-module as a full Fock module. We
demonstrate in Examples 3.17, 3.18, and 3.20 the influence of different choices for
a left multiplication.

Motivated by the examples we ask, whether it is possible in general to represent
operators on an interacting Fock space by operators on a full Fock module and,
thus, to glue together the theory of interacting Fock spaces and the theory of full
Fock modules. In Section 4 we answer this question in the affirmative sense by
an explicit construction (Theorems 4.1, 4.2, and 4.6). We obtain in full algebraic
generality that the algebra generated by creators and annihilators on an interacting
Fock space is determined by the module generalization of the Cuntz relations. In
Example 3.19 we show that it is also possible to associate with a given Fock module
an interacting Fock space. In Example 4.7 we explain that the construction in 3.19
reverses the construction in Section 4.

We obtain a clearer picture of what the construction actually does, if we restrict
to the subcategory of interacting Fock spaces which are embeddable (via an isom-
etry) into a usual full Fock space. In Section 5 we show that a creator a∗(f) on
an embeddable interacting Fock space may be represented as a modified creator
κ`∗(f) on a full Fock space (Theorem 5.5). Here κ is in the relative commutant
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of the number operator and, in other words, κ leaves invariant the number of par-
ticles. In the module picture the one-particle sector of the Fock space is replaced
by a two-sided module, precisely, over the algebra of such operators. Therefore,
in the module picture it is possible to ‘absorb’ the operator κ into the creator on
the full Fock module over the one-particle module (Theorem 5.9). We also provide
two criteria which show that among the interacting Fock space there are plenty of
embeddable ones (Theorems 5.2, and 5.3).

In the first few sections we introduce the necessary structures and present sev-
eral examples for these structures. In Section 2 we define what we understand
by interacting Fock space. The definition slightly differs from the definition in
[4]. The difference consists, however, only in that we divided out the kernel of the
semiinner product of [4] in order to have an inner product. Then we describe some
examples of interacting Fock spaces.

In Section 3 we present a generalization of the notion of Hilbert module and full
Fock module to Hilbert modules over arbitrary ∗–algebras (not only C∗–algebras)
with a new positivity srutcture (called P ∗–algebras in [16]). This notion of posi-
tivity, still algebraic but much more flexible than just algebraic positivity, allows
for tensor products of Hilbert modules. It shows to be crucial also in other ap-
plications like in [6]. In our context the generalizations are necessary in view of
Example 2.7 [1] where a relation between orthogonal polynomials and interacting
Fock spaces is pointed out. Being the motivation for the remaining sections, we
show for some examples how distributions of creators and annihilators on an in-
teracting Fock space may be realized as distributions of creators and annihilators
on a suitable full Fock module.

In Section 6 we explain all aspects from the first sections in the example of the
symmetric Fock space. We point out the origin of the complications and explain
why the symmetric Fock space is a “bad” example for an interacting Fock space.

Notations and conventions. All constructions, like direct sum and tensor
product, are purely algebraic. By L we denote spaces of linear mappings (without
any restriction like boundedness), whereas La denotes spaces of adjointable map-
pings between or on spaces with (C–valued or ∗–algebra-valued) inner product.
With one exception (in the proof Theorem 5.2 where we consider the square root
of a positive self-adjoint densely defined operator) the adjoint of an operator be-
tween pre-Hilbert spaces G and H is always a mapping H → G. For details about
Hilbert modules and GNS-representation we refer the reader to [12, 10, 15, 14]. A
fairly complete account of what is necessary can be found in [8, 16].

2. Interacting Fock Space

The definition of interacting Fock space used here differs slightly from the def-
inition in [4]. The difference is that we divide out the kernel of the inner product.
The benefits from this approach are a positive definite inner product and absence of
the condition that the operators have to respect some kernel (cf. the introduction).
Of course, we loose the tensor product structure of the n–particle sector. Instead
of a tensor product H⊗n we are concerned with rather arbitrary pre-Hilbert spaces
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Hn. However, the Hn are required to be spanned by the range of all creators. Let
us introduce some notation.

Definition 2.1. Let H be some pre-Hilbert space. By La(H) we denote the space
of all adjointable mappings A : H → H (i.e. there exists a mapping A∗ : H → H
such that 〈f, Ag〉 = 〈A∗f, g〉 for all f, g ∈ H).

Let
(
Hn

)
n∈N0

be a family of pre-Hilbert spaces. Denote by H =
⊕

n∈N0
Hn

their algebraic direct sum. Setting Hn = {0} for n < 0, we define for each m ∈ Z
the space

La
m(H) =

{
A ∈ La(H) : AHn ⊂ Hn+m (n ∈ N0)

}
.

Definition 2.2. Let
(
Hn

)
n∈N0

be a family of pre-Hilbert spaces with H0 = CΩ.
Let H be another pre-Hilbert space. We say I =

⊕
n∈N0

Hn is an interacting
Fock space (based on H), if there exists a mapping a∗ : H → La

1(I), fulfilling
span

(
a∗(H)Hn

)
= Hn+1.

Remark 2.3. Usually, we identify H and H1 by requiring a∗(f)Ω = f for all
f ∈ H. However, in Example 2.7 we will have a∗(f)Ω =

√
ω1f for a fixed real

number ω1 > 0. Another problem may appear, if a∗(f)Ω = 0 although f 6= 0.
Therefore, it is important to keep the freedom to choose H and H1 differently.

The operators a∗(f) are called creators. Their adjoints a(f) are called annihi-
lators. Observe that the linear span of all a∗(fn) . . . a∗(f1)Ω (fi ∈ H) is Hn. By
A(I) we denote the ∗–algebra generated by all a∗(f) (f ∈ H).

Example 2.4. The full Fock space. The usual full Fock space F(H) over
a pre-Hilbert space H is obtained by setting Hn = H⊗n equipped with natural
inner product of the n–fold tensor product. The creators on the full Fock space
are denoted by `∗(f). The action of `∗(f) is defined by setting `∗(f)fn ⊗ . . . ⊗
f1 = f ⊗ fn ⊗ . . . ⊗ f1 and `∗(f)Ω = f . It is easy to see that `∗(f) has an
adjoint `(f), fulfilling `(f)fn ⊗ . . . ⊗ f1 = 〈f, fn〉fn−1 ⊗ . . . ⊗ f1 and `(f)Ω = 0.
The ∗–algebra A(F(H)) generated by `∗(H) is determined by the Cuntz relations
`(f)`∗(g) = 〈f, g〉.
Remark 2.5. In the following examples we construct several interacting Fock spaces
as described in [4]. In other words, we start with a full Fock space and then
change the inner product on the n–particle sector and divide out the kernel. In
these cases we always choose the creators a∗(f) to be the images of the usual ones
`∗(f) on the quotient. Necessarily, the `∗(f) have to respect the kernel of the new
inner product. By giving an explicit adjoint of `∗(f), this condition is fulfilled,
automatically. Clearly, the image of this adjoint on the quotient is the the unique
adjoint a(f) of a∗(f).

Example 2.6. The Lu-Ruggeri interacting Fock space. In [11] the n–par-
ticle sectors of the full Fock space F(L2(R)) had been equipped with a new inner
product by setting

〈fn ⊗ . . .⊗ f1, gn ⊗ . . .⊗ g1〉

=
∫ ∞

0

dx1

∫ ∞

x1

dx2 . . .

∫ ∞

xn−1

dxn f1(x1) . . . fn(xn)gn(xn) . . . g1(x1).
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Notice that this is nothing but the integral over the n–simplex {xn ≥ . . . ≥ x1 ≥
0}. An adjoint of the creator `∗(f) is given by

[`(f)g ⊗ gn ⊗ . . .⊗ g1](xn, . . . , x1)

=
∫ ∞

xn

dx f(x)g(x)gn(xn) . . . g1(x1) and `(f)Ω = 0.

Choosing Hn as the pre-Hilbert space obtained from L2(R)⊗n by dividing out the
length-zero elements of the new semiinner product, we get an interacting Fock
space.

Example 2.7. The one-mode interacting Fock space and orthogonal
polynomials. Let µ be a symmetric probability measure on R with compact
support so that all moments

∫
xnµ(dx) (n ∈ N0) exist. It is well-known that there

exists a sequence
(
ωn

)
n∈N of non-negative real numbers and a sequence

(
Pn

)
n∈N0

of (real) polynomials, such that P0 = 1, P1 = x,

xPn = Pn+1 + ωnPn−1 (n ≥ 1),

and

〈Pn, Pm〉 :=
∫

Pm(x)Pn(x)µ(dx) = δmnωn . . . ω1.

Let us consider the one-mode Fock space F(C). Denote by en the basis vector of
C⊗n and equip the n–particle sector with a new (semi-)inner product by setting
〈en, en〉 = ωn . . . ω1. Of course, `∗(e1) has an adjoint. Dividing out the kernel of
the new inner product (which is non-trivial, if and only if some of the ωn are 0)
we obtain the one-mode interacting Fock space Iω. In [1] Accardi and Bozejko
(see also [9]) showed that the mapping en 7→ Pn establishes a unitary U from
the completion of Iω onto L2(R, µ). Moreover, denoting a∗ = a∗(e1), one obtains
Ua∗U∗Pn = Pn+1 and U(a∗+a)U∗ = x. The last equation means that the operator
of multiplication by x on L2(R, µ) is represented on the one-mode interacting Fock
space by the sum a∗ + a.

For later use in Example 4.8 and as a motivation for Section 5 we present a
variant of the preceding discussion. Assume that all ωn are different from 0. (This
means that the support of µ contains infinitely many points.) Let us use the
normalized polynomials Qn = 1√

ωn...ω1
Pn. The recursion formula becomes

xQn =
√

ωn+1Qn+1 +
√

ωnQn−1 (n ≥ 1),

with Q0 = 1 and Q1 = x√
ω1

. Then the mapping en 7→ Qn establishes a unitary
V from the usual full Fock space F(C) onto L2(R, µ). Moreover, denoting by
`∗ = `∗(e1) the usual creator, one obtains V `∗V ∗Qn = Qn+1 and V (

√
ωN `∗ +

`
√

ωN )V ∗ = x. By
√

ωN we mean the function n 7→ ωn of the number operator
N : en 7→ nen. In other words, instead of the symmetric part of the creator a∗ on
the interacting Fock space, we obtain the symmetric part of the modified creator√

ωN`∗ on the usual full Fock space. It is easy to see that a∗ 7→ √
ωN `∗ still defines

a ∗–algebra monomorphism A(I) → La(F(C), if some ωn are 0. In this case one
just has to use the partial isometry V defined as above as long as ωn 6= 0, and
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mapping en to 0 for all n ≥ n0 where n0 is the smallest n for which ωn = 0. It is
noteworthy, that V ∗ always is an isometry.

3. Pre-Hilbert Modules and Full Fock Modules Over ∗–Algebras

Usually, semi-Hilbert modules are modules with a semiinner product which
takes values in a C∗–algebra Z. In a C∗–algebra the positive elements and the
positive functionals can be characterized in many equivalent ways. For instance,
we can say an element z ∈ Z is positive, if it can be written in the form w∗w for
suitable w ∈ Z. We can also give a weak definition and say that z is positive,
if ϕ(z) ≥ 0 for all positive functionals ϕ. Here we can say a functional on Z is
positive, if ϕ(z∗z) ≥ 0 for all z ∈ Z, but also if ‖ϕ‖ = ϕ(1). Also if we want to
divide out the length-zero elements in a semi-Hilbert module in order to have a
pre-Hilbert module, we can either use the generalized Cauchy-Schwarz inequality

〈x, y〉〈y, x〉 ≤ ‖〈y, y〉‖ 〈x, x〉
or we can use a weak Cauchy-Schwarz inequality

ϕ(〈x, y〉)ϕ(〈y, x〉) ≤ ϕ(〈y, y〉)ϕ(〈x, x〉)
(ϕ running over all positive functionals), because the positive functionals separate
the points in a C∗–algebra. It is easy to equip the tensor product of Hilbert
modules with an inner product and to show that it is positive.

In our applications we have to consider Hilbert modules over more general
∗–algebras, where the preceding characterizations of positive elements and posi-
tive functionals lead to different notions of positivity. The algebraic definition,
where only elements of the form z∗z or sums of such are positive, excludes many
good candidates for positive elements and, in fact, is too restrictive to include
our applications. The weak definition, where z ≥ 0, if ϕ(z) ≥ 0 for all positive
functionals ϕ, allows for many positive elements. However, in many cases, for
instance, if we want to show positivity of the inner product on the tensor product,
this condition is uncontrollable. Here we give an extended algebraic definition
where we put by hand some distinguished elements to be positive and consider a
certain convex cone which is generated by these elements. Of course, a suitable
choice of these distinguished elements depends highly on the concrete application.

If we want to divide out the length-zero elements, we should require that the
positive functionals separate the points of the ∗–algebra. However, also here it
turns out that we cannot consider all positive functionals (i.e. functionals ϕ on
Z for which ϕ(z∗z) ≥ 0 for all z ∈ Z), because we cannot guarantee that these
functionals send our distinguished positive cone into the positive reals (see Remark
3.2).

In these notes, with one but important exception in 3.16 where we consider
pre-Hilbert Z–C–modules (i.e. a represenation of Z on a pre-Hilbert space), we are
concerned exclusively with two-sided modules over the same (unital) ∗–algebra Z.
Also our definition of positivity of the inner product involves left multiplication.
Therefore, we include the two-sided structure into the definitions. We remark that
it is very well possible to generalize the definitions to W–Z–modules, where W may
be a ∗–algebra different from Z (with its own distinguished positive elements).
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Restricting this to the case W = C (where C has the obvious positivity structure),
we arrive at the notion of right pre-Hilbert Z–module (generalizing the well-known
notion where Z is a C∗–algebra).

Definition 3.1. Let Z be a unital ∗–algebra. We say a subset P of Z is a Z–cone,
if z ∈ P implies w∗zw ∈ P for all w ∈ Z. A convex Z–cone is a Z–cone P which is
stable under sums (i.e. z, w ∈ P implies z + w ∈ P ).

Let S be a distinguished subset of Z. Then by P (S) we denote the convex
Z–cone generated by S (i.e. the set of all sums of elements of the form w∗zw with
z ∈ S,w ∈ Z). If S contains 1 and consists entirely of self-adjoint elements, then
we say the elements of P (S) are S–positive. (In [16, Appendix C] we call such
algebras with a positive Z–cone P ∗–algebras and analyze them in more detail.)

Of course, in a reasonable choice S should contain only self-adjoint elements.
If S = {1}, then P (S) contains all sums over elements of the form z∗z, i.e. we
recover the usual algebraic definition of positivity. In a reasonable choice for S
these elements should also be positive. Therefore, we require 1 ∈ S. In our
applications we will identify Z ⊂ La(G) as a ∗–algebra of operators on a pre-
Hilbert spae G, and S will typically be a set of elements z which can be written
as a sum over Z∗Z where Z ∈ La(G) but not necessarily Z ∈ Z. In other words,
we have algebraic positivity in a bigger algebra.

Remark 3.2. Notice that even contradictory choices of S are possible. Consider,
for instance, the ∗–algebra generated by one self-adjoint indeterminate x. Then
both S = {1, x} and S = {1,−x} are possible choices. Indeed, there exist rep-
resentations of this algebra which send either x or −x to a positive operator on
a Hilbert space which, of course, cannot be done simultaneously. Notice that
x 7→ −x extends to an isomorphism which does not preserve either of the notions
of positivity.

Definition 3.3. Let us fix a set S of self-adjoint elements in Z containing 1. A pre-
Hilbert Z–module is a Z–Z–module E with a sesquilinear inner product 〈•, •〉 : E×
E → Z, fulfilling the following requirements

〈x, x〉 = 0 ⇒ x = 0 (definiteness),

〈x, yz〉 = 〈x, y〉z (right Z–linearity),

〈x, zy〉 = 〈z∗x, y〉 (∗–property),
and the positivity condition that for all choices of z ∈ S and of finitely many
xi ∈ E there exist finitely many zk ∈ S and zki ∈ Z, such that

〈xi, zxj〉 =
∑

k

z∗kizkzkj .

If definiteness is missing, then we speak of a semiinner product and a semi-Hilbert
module.

Since 1 ∈ S, the inner product is S–positive (i.e. 〈x, x〉 ∈ P (S)), and since S
consists only of self-adjoint elements, the inner product is symmetric (i.e. 〈x, y〉 =
〈y, x〉∗) and left anti-linear (i.e. 〈xz, y〉 = z∗〈x, y〉).
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Observation 3.4. It is sufficient to check positivity on a subset Eg of E which
generates E as a right module. Indeed, for finitely many xi ∈ E there exist finitely
many y` ∈ Eg and z`i ∈ Z such that xi =

∑
` y`z`i for all i. It follows that for

z ∈ S

〈xi, zxj〉 =
∑

`,m

z∗`i〈y`, zym〉zmj =
∑

`,m,k

z∗`iw
∗
k`zkwkmzmj =

∑

k

v∗kizkvkj ,

where vki =
∑

` wk`z`i.

Proposition 3.5. Let E and F be semi-Hilbert Z–modules. Their tensor product
over Z

E ¯ F = E ⊗ F/{xz ⊗ y − x⊗ zy}
is turned into a semi-Hilbert Z–module by setting

〈x¯ y, x′ ¯ y′〉 = 〈y, 〈x, x′〉y′〉.
Proof. We only check the positivity condition, because the remaining conditions
are clear. By Observation 3.4 it is sufficient to check it for elementary tensors
x¯ y. So let xi ¯ yi be finitely many elementary tensors in E ¯ F , and let z ∈ S.
Then

〈xi¯ yi, zxj ¯ yj〉 = 〈yi, 〈xi, zxj〉yj〉 =
∑

k

〈zkiyi, zkzkjyj〉 =
∑

k,`

w∗`(ki)z
′
`w`(kj),

where for each k we have finitely many elements w`(ki) ∈ Z corresponding to the
finitely many elements zkiyi in F . ¤
Observation 3.6. Also here it is sufficient to consider elementary tensors xi¯ yi

where xi and yi come from (right) generating subsets of E and F , respectively.
This follows, because any element in F , in particular an element of the form zy,
can be written as sum over yizi, and elements of the form xi¯zy = xiz¯y, clearly,
span E ¯ F .

So far we were concerned with semi-Hilbert modules. For several reasons it is
desirable to have a strictly positive inner product. For instance, contrary to a
semiinner product, an inner product guarantees for uniqueness of adjoints. In the
sequel, we provide a quotienting procedure, which allows to construct a pre-Hilbert
module out of a given semi-Hilbert module, if on Z there exists a separating set S∗

of positive functionals which is compatible with the positivity structure determined
by S. However, before we proceed we show a simple example of a ∗–algebra in
which the points are not separated by states.

Example 3.7. Let us consider the complex numbers C as a two-dimensional real
algebra with basis {1, ı}. The complexification of C (i.e. {µ1 + νı (µ, ν ∈ C)})
becomes a (complex) ∗–algebra, if we define 1 and ı to be self-adjoint. In this
∗–algebra the element −1 = −(12) = ı2 is negative and positive, so that ϕ(−1) ≤ 0
and ϕ(−1) ≥ 0, i.e ϕ(−1) = 0 for all states ϕ. Of course, −1 6= 0, so that in this
∗–algebra the states do not separate the points.

Another example is the ∗–algebra of differentials of complex polynomials in a
real indeterminate t. Here we have dt2 = 0. Since dt is self-adjoint, we conclude
that ϕ(dt) = 0 for all states ϕ. The next example is the Ito algebra of differentials
of stochastic processes.
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Definition 3.8. Let Z be a unital ∗–algebra with a subset S of self-adjoint el-
ements containing 1. We say a functional ϕ on Z is S–positive, if ϕ(z) ≥ 0 for
all z ∈ P (S). Let S∗ be a set of S–positive functionals. We say S∗ separates the
points (or is separating), if ϕ(z) = 0 for all ϕ ∈ S∗ implies z = 0.

Observation 3.9. If S∗ is a set of functionals such that ϕ(z) ≥ 0 for all ϕ ∈ S∗

and z ∈ S, and such that ϕ ∈ S∗ implies that ϕ(z∗ • z) ∈ S for all z ∈ Z,
then the elements of S∗ are S–positive. We can interpret the second property
in the following way. If we construct the GNS-representation π for an element
ϕ ∈ S∗ (which is possible, because ϕ has just been established as S–positive,
i.e. in particular, as positive in the usual sense), then for any vector g in the
representation space G the functional 〈g, •g〉 is an element of S∗, too.

Proposition 3.10. Let Z be a unital ∗–algebra with a subset S of self-adjoint
elements containing 1, and let S∗ be a separating set of S–positive functionals on
Z. Let E be a semi-Hilbert Z–module. Then the set N =

{
x ∈ E : 〈x, x〉 = 0

}
is a

two-sided Z–submodule of E. Moreover, the quotient module E0 = E/N inherits a
pre-Hilbert Z–module structure by setting 〈x + N, y + N〉 = 〈x, y〉.
Proof. As S∗ is separating, we have x ∈ N, if and only if ϕ(〈x, x〉) = 0 for all ϕ ∈
S∗. Let ϕ ∈ S∗. Then the sesquilinear form 〈x, y〉ϕ = ϕ(〈x, y〉) on E is positive.
By Cauchy-Schwarz inequality we find that 〈x, x〉ϕ = 0 implies 〈y, x〉ϕ = 0 for all
y ∈ E. Consequently, x, y ∈ N implies x+y ∈ N. Obviously, x ∈ N implies xz ∈ N

for all z ∈ Z. And by the ∗–property and Cauchy-Schwarz inequality we find x ∈ N

implies zx ∈ N for all z ∈ Z. Therefore, N is a two-sided Z–submodule of E so
that E/N is a two-sided Z–module. Once again, by Cauchy-Schwarz inequality we
see that 〈x + N, y + N〉 is a well-defined element of Z. ¤

Observation 3.11. Notice that an operator A ∈ La(E) respects N, automatically.
In this case any adjoint A∗ ∈ La(E) gives rise to a unique adjoint of A in La(E0).

Remark 3.12. Also if we consider pre-Hilbert Z–modules E and F , their tensor
product E¯F may be only a semi-Hilbert module. However, if Z is a C∗–algebra
and E is complete, then the semiinner product on the tensor product becomes
inner; see [10].

Now we are ready to define the full Fock module in our algebraic framework.
The original definition in the framework of C∗–algebras is due to Pimsner [13]
and Speicher [18]. By Remark 3.12 the quotient in the following definition can
be avoided, if we restrict to Hilbert modules E (which does not mean that we
complete the tensor products).

Definition 3.13. Let Z be a unital ∗–algebra with a subset S of self-adjoint
elements containing 1, and let S∗ be a separating set of S–positive functionals on
Z. Let E be pre-Hilbert Z–module . The full Fock module over E is the pre-Hilbert
Z–module

F(E) =
( ⊕

n∈N0

E¯n
)
/N

where we set E¯0 = Z and E¯1 = E.
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For x ∈ E we define the creator `∗(x) ∈ La(F(E)) by setting

`∗(x)xn ¯ . . .¯ x1 = x¯ xn ¯ . . .¯ x1 and `∗(x)z = xz.

The adjoint of `∗(x) is the annihilator `(x) defined by setting

`(x)xn ¯ . . .¯ x1 = 〈x, xn〉xn−1 ¯ . . .¯ x1 and `(x)z = 0.

By A(F(E)) we denote the unital ∗–subalgebra of La(F(E)) generated by `∗(E)
and Z, where Z acts canonically on F(E) by left multiplication.

Remark 3.14. Like in the case of the usual full Fock space, the ∗–algebra A(F(E))
is determined by the generalized Cuntz relations `(x)`∗(y) = 〈x, y〉; see [13].

3.15. Convention. If Z is a C∗–algebra, then, unless stated otherwise explicitly,
we always assume that Z comes along with its usual positivity structure. It is
routine to check that in this case the usual definition of a two-sided pre-Hilbert
module and ours coincide. In particular, our definition of full Fock module reduces
to the original definition in [13, 18].

Before we come to our examples of full Fock modules, we describe a well-known
construction which allows to relate a pre-Hilbert modules to spaces of operators
between pre-Hilbert spaces which carry representations of Z. However, also here
we have to pay attention to the problem of positivity.

Example 3.16. Concrete pre-Hilbert modules. Let π be a representation of
Z on a pre-Hilbert space G. In other words, G is a Z–C–module and we can ask,
whether (equipping C with convex C–cone generated by 1 as positive elements, and
extending our definition of pre-Hilbert modules to two-sided modules over different
algebras in an obvious fashion) G with its natural inner product is a pre-Hilbert
module. For this it is necessary and sufficient that 〈g, π(z)g〉 ≥ 0 for all g ∈ G
and all z ∈ S. (Indeed, for gi ∈ G (i = 1, . . . , n) we find

∑
i,j ci〈gi, π(z)gj〉cj =∑

i,j〈cigi, π(z)gjcj〉 ≥ 0 for all
(
ci

) ∈ Cn. Therefore, the matrix
(〈gi, π(z)gj〉

)
is

positive in Mn and, henceforth, can be written in the form
∑

k dkidkj for suitable(
dki

) ∈ Mn.) If π has this property, then we say it is S–positive.
Now let π be S–positive and let E be a pre-Hilbert Z–module. Then our tensor

product construction goes through as before (notice that idC constitutes a sepa-
rating set of positive functionals on C) and we obtain a pre-Hilbert Z–C–module
H = E ¯ G. In other words, H is a pre-Hilbert space with a representation ρ of
Z which acts as ρ(z)(x ¯ g) = zx ¯ g. Additionally, we may interpret elements x
as mappings Lx : g 7→ x¯ g in La(G,H) with adjoint L∗x : y ¯ g 7→ π(〈x, y〉)g. Of
course, Lzxz′ = ρ(z)Lxπ(z′). Observe that x 7→ Lx is one-to-one, if π is faithful.
In this case also ρ is faithful.

Obviously, also ρ is S–positive so that we may continue the construction. For
a tensor product of pre-Hilbert Z–modules E and F we find Lx¯y = LxLy ∈
La(G, E ¯ F ¯ G) where Ly ∈ La(G,F ¯ G) and Lx ∈ La(F ¯ G,E ¯ F ¯ G).
We recover the facts, well-known for Hilbert modules over C∗–algebras, that a
two-sided pre-Hilbert module may be interpreted as a functor which sends one
representation of Z to another, and that the composition of two such functors is
the tensor product, at least within the category of S–positive representations.
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Example 3.17. Centered pre-Hilbert modules. Let H and G be pre-Hilbert
spaces, and let Z ⊂ La(G) be a ∗–algebra of operators on G with positivity struc-
ture determined by the set S = {1}. Then E = H⊗Z with the obvious operations
becomes a pre-Hilbert Z–module with inner product 〈h⊗ z, h′ ⊗ z′〉 = 〈h, h′〉z∗z′.
(In fact, E is the exterior tensor product of the pre-Hilbert C–C–module H and
the pre-Hilbert Z–Z–module Z; see [10, 14].) E is an example for what we call
a centered pre-Hilbert module in [14]. (Centered modules are two-sided modules
which are generated as a module by those elements which commute with all al-
gebra elements.) In [15] it is shown that all centered pre-Hilbert modules over a
C∗–algebra may be embedded into a suitable completion of E for a suitable choice
of the Hilbert space H. In [8] it is shown that under some normality and closure
conditions any two-sided Hilbert B(G)–module is of the form B(G, H ⊗G) for a
suitable Hilbert space H.

One easily checks that E¯E = H ⊗H ⊗Z. Continuing this procedure, we find
F(E) = F(H)⊗ Z with inner product

〈(hn ⊗ zn)¯ . . .¯ (h1 ⊗ z1), (h′n ⊗ z′n)¯ . . .¯ (h′1 ⊗ z′1〉 =

〈hn ⊗ . . .⊗ h1, h
′
n ⊗ . . .⊗ h′1〉z∗1 . . . z∗nz′n . . . z′1.

Again one can show that the full Fock module over an arbitrary centered pre-
Hilbert module is contained in a suitable completion of F(E).

Example 3.18. A non-centered example. Let E be as in the preceding ex-
ample. We perform the construction like in 3.16. If Z acts non-degenerately on G,
then we find E¯G = H⊗G and the representation ρ of Z on H⊗G is just 1⊗ id.
Of course, also any S–positive representation of Z on H gives rise to a proper left
action of Z on E. With such a left action E is no longer centered.

As a special example we set H = G and for ρ we choose ρ = id⊗1. This means
that an element of Z now acts from the left as operator on the left factor of G⊗G.
(Here E = G ⊗ Z may be understood as the exterior tensor product of the pre-
Hilbert Z–C–module G and the pre-Hilbert C–Z–module Z.) Also this time the
full Fock module over E may be identified with F(G) ⊗ Z where, however, now
the inner product is given by

〈(gn ⊗ zn)¯ . . .¯ (g1 ⊗ z1), (g′n ⊗ z′n)¯ . . .¯ (g′1 ⊗ z′1)〉 =
〈
gn ⊗ (zngn−1)⊗ . . .⊗ (z2g1), g′n ⊗ (z′ng′n−1)⊗ . . .⊗ (z′2g

′
1)

〉
z∗1z′1. (3.1)

Of course, an element z ∈ Z acts from the left on gn ⊗ . . .⊗ g1 ⊗ z′ as an operator
on the factor gn.

Example 3.19. Interacting Fock spaces arising from full Fock modules.
Let E be pre-Hilbert Z–module and suppose that Z ⊂ Ba(G) acts (S–positively)
on a pre-Hilbert space G. Let Ω be a fixed unit vector in G and suppose that
the state 〈Ω, •Ω〉 separates the elements of E in the sense that 〈Ω, 〈x, x〉Ω〉 = 0
implies x = 0. We set H0 = CΩ. Refering again to the construction in the proof of
Proposition 3.16, we denote by Hn = E¯n ¯Ω (n ∈ N) the subspaces of E¯n ¯G
consisting of all elements LxΩ (x ∈ E¯n).
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Then I =
⊕

n∈N0
Hn is an interacting Fock space based on H1. Let GΩ = ZG.

It is easy to see that Hn = E¯n ¯GΩ (n ∈ N). Thus, I is just F(E)¯GΩ ª (1−
|Ω〉〈Ω|)GΩ. The creators are given by a∗(h) = `∗(x)¯ id ¹ I, where x is the unique
element in E, fulfilling LxΩ = h ∈ H1. By construction, `∗(x)¯ id leaves invariant
the subspace I of F(E) ¯ G. Defining the projection pΩ = |Ω〉〈Ω| ⊕⊕

n∈N idHn

on F(E)¯G, we have a∗(h) = (`∗(x)¯ id)pΩ, so that the adjoint of a∗(h) is given
by a(h) = pΩ(`(x)¯ id) ¹ I. It is easy to see that a(h) maps into I.

In Example 4.7 we will see that by this construction an arbitrary interacting
Fock space based on H1 can be recovered from a full Fock module. If a∗(h)Ω = 0
implies a∗(h) = 0, then the whole construction also works for interacting Fock
spaces based on more general pre-Hilbert spaces H.

Example 3.20. The full Fock module related to the Anderson model
[4]. The one-particle module is the centered module E from Example 3.17 with
H = G = L2(R) and the algebra Z is the C∗–algebra L∞(R) with its usual
positivity structure. On the n–particle sector E⊗n (in the notations of [4]) the
(semi-)inner product is given by Equation (3.1). This means that it cannot be
understood as the canonical inner product on the n–fold tensor product.

However, Example 3.18 tells us that the inner product immediately becomes
the canonical inner product of the n–fold tensor product E¯n, if we put on E
the correct left multiplication. The centered left action of an element z ∈ L∞(R)
as suggested in [4] maps a function f(s)z′(t) ∈ L2(R) ⊗ L∞(R) to the function
f(s)z(t)z′(t). The correct left action from Example 3.18, instead, maps f ⊗ z′ to
the function z(s)f(s)z′(t).

In [4] the creators A∗(x) (x ∈ E) on the interacting Fock module had been
defined by setting

A∗(x)xn ⊗ . . .⊗ x1 = x⊗ xn ⊗ . . .⊗ x1.

We remark that the relation zA∗(x) = A∗(zx) = A∗(x)z (where E is equipped
with the centered left multiplication) cannot be fulfilled on the interacting Fock
module whose inner product is defined by (3.1). Indeed, let x = χ[0,1] ⊗ 1 and
z = χ[0, 1

2 ] − χ[ 12 ,1]. Then

〈x⊗ x,A∗(xz)A∗(x)1〉 = 〈x⊗ x, xz ⊗ x〉 =
∫ 1

0

dr

∫ 1

0

ds (χ[0, 1
2 ] − χ[ 12 ,1])(s) = 0,

but

〈x⊗ x,A∗(x)A∗(zx)1〉 = 〈x⊗ x, x⊗ zx〉

=
∫ 1

0

dr

∫ 1

0

ds (χ[0, 1
2 ] − χ[ 12 ,1])(t) = (χ[0, 1

2 ] − χ[ 12 ,1])(t) 6= 0.

Example 3.21. The full Fock module for the Lu-Ruggeri interacting Fock
space. In principle, our goal is to recover the inner product of elements in the
interacting Fock space from Example 2.6 by the inner product of suitable elements
in the full Fock module from the preceding example. Before we can do this it is
necessary to modify this module slightly. On the one hand, L2(R)⊗ L∞(R) does
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not yet contain the elements which we need. On the other hand, we will have
to evaluate L∞–functions on the fixed point 0. This does not make sense in a
function space whose functions are determined only almost everywhere. For these
reasons our one-particle module is

E = span
{
f £ z : (s, t) 7→ f(s)χ[0,s](t)z(t)

∣∣ f ∈ L2(R+), z ∈ Cb(R+)
}

where R+ = [0,∞). One may understand the £–sign as a time-ordered tensor
product. Observe that not one of the non-zero functions in E is simple. Clearly,
E is invariant under the left multiplication z(f £ z′) = (zf) £ z′ and the right
multiplication (f £ z′)z = f £ (z′z) by elements z ∈ Cb(R+). Moreover, the inner
product

〈f £ z, f ′ £ z′〉(t) =
∫

ds (f £ z)(s, t)(f ′ £ z′)(s, t) =
∫ ∞

t

ds f(s)z(t)f ′(s)z′(t)

maps into the continuous bounded functions on R+ so that E becomes a pre-
Hilbert Cb(R+)–module.

Define the state ϕ(z) = z(0) on Cb(R+). One easily checks that

ϕ
(〈(fn £1)¯ . . .¯ (f1 £1), (gn £1)¯ . . .¯ (g1 £1)〉) = 〈fn⊗ . . .⊗f1, gn⊗ . . .⊗g1〉

where the right-hand side is the inner product from Example 2.6.

4. Full Fock Modules Associated With an Interacting Fock Space

Our goal is to associate with an arbitrary interacting Fock space I a full Fock
module in such a way that certain ∗–algebras of operators on I may represented as
operators on that Fock module. In particular, we want to express the moments of
operators on I in the vacuum expectation 〈Ω, •Ω〉 by moments of the corresponding
operators on the Fock module in a state of the form

ϕ
(〈1, •1〉),

where 〈1, •1〉 denotes the vaccum conditional expectation on the Fock module,
and where ϕ is a state. We will see that we can achieve our goal by a simple
reinterpretation of the graduation of La(I) in Definition 2.1. Since we work in
a purely algebraic framework, we cannot consider the full ∗–algebra La(I). It is
necessary to restrict to the ∗–algebra A0(I) =

⊕
n∈ZL

a
n(I); see Remark 4.4 below.

Clearly, A0(I) is a graded ∗–algebra.

Let I =
⊕

n∈N0
Hn be an interacting Fock space and let S be the subset of

La
0(I) consisting of all elements of the form a∗a where, however, a ∈ La(I). As

La
k(I)La

` (I) ⊂ La
k+`(I) we find that all spaces La

m(I) are La
0(I)–La

0(I)–modules.
Clearly,

〈x, y〉 = x∗y

fulfills our positivity condition and all other properties of an La
0(I)–valued inner

product so that La
m(I) becomes a pre-Hilbert La

0(I)–module.
One easiliy checks that La

k(I)¯La
` (I) = span

(
La

k(I)La
` (I)

)
via the identification

x ¯ y = xy. (See also Remark 4.4.) We set E0 = La
1(I) and define the maximal
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full Fock module F0(I) associated with the interacting Fock space I by

F0(I) = F(E0) =
⊕

n∈N0

(E0)¯n ⊂
⊕

n∈N0

La
n(I).

We explain in Remark 4.3 in which sense this module is maximal.
Let A ∈ La

m(I). By setting

axn ¯ . . .¯ x1 = axn . . . x1 =

{
Axn . . . x1 for n + m ≥ 0
0 otherwise,

we define an element a in La(F(E0)).

Theorem 4.1. The linear extension of the mapping A 7→ a to all element a in
A0(I) defines a ∗–algebra monomorphism A0(I) → La(F(E0)).

Proof. We perform the construction as in the proof of Proposition 3.16. One easily
checks that F0(I)¯ I = I and that ρ(a) = A. Therefore, A 7→ a is injective and,
clearly, a ∗–homomorphism. (Cf. also the appendix of [14].) ¤

Theorem 4.2. For all A ∈ A0(I) we have

〈Ω, AΩ〉 =
〈
Ω, 〈1, a1〉Ω〉

.

Proof. It is sufficient to check the statement for A ∈ La
m(I). If m 6= 0, then

both sides are 0. If m = 0, then a1 = a = A. (Here we made the identifications
La

0(I)(E0)¯0 ⊂ (E0)¯0 = La
0(I).) Therefore, both sides coincide also for m =

0. ¤

Remark 4.3. The module F0(I) is maximal in the sense that the vacuum 1 is
cyclic for A0(I) and that A0(I) is the biggest subalgebra of La(I) which may be
represented on a purely algebraic full Fock module. Cf. also Remark 4.4.

The following somewhat lengthy remark explains to some extend why we have
to restrict to A0(I), and why La

k(I)¯ La
` (I) cannot coincide with La

k+`(I). The
reader who is not interested in these explanations may skip the remark.

Remark 4.4. An excursion about duality. In our framework, where the con-
structions of direct sum and tensor product are understood purely algebraically,
there is a strong anti-relation between spaces which arise by such constructions
and spaces of operators on them. For instance, a vector space V may be under-
stood as the direct sum

⊕
b∈B(Cb) over all subspaces Cb where b runs over a basis

B of V . To any b ∈ B we associate a linear functional βb in the algebraic dual
V ′ of V by setting βb(b′) = δbb′ . Then the direct sum V ′

B =
⊕

b∈B(Cβb) over all
subspaces Cβb of V ′ is a subspace of V ′ which depends on B, whereas the direct
product over all Cβb may be identified with V ′ itself. Obviously, V ′

B is dense in
V ′ with respect to the weak∗ topology. Problems of this kind are weakened, when
topolgy comes in, but they do not dissappear. For instance, also the Banach space
dual V ∗ of a Banach space V , usually, is much “bigger” than V .

As another example let us consider the space L(V,W ) of linear mappings be-
tween two vector spaces V and W ; cf. the appendix of [14]. Clearly, L(V, W ) is an
L(W )–L(V )–module. Denote by Lf(V, W ) the finite rank operators. Notice that
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we may identify Lf(V, W ) with W ⊗ V ′. The elements of W ′ ⊗ V act on L(V,W )
as linear functionals. Clearly, Lf(V, W ) is dense in L(V, W ) with respect to the
locally convex Hausdorff topology coming from this duality. It is noteworthy that
an element a ∈ L(W ) acts as right module homomorphism on both, L(V, W ) and
Lf(V, W ). Actually, a as an element of Lr(L(V, W )) is uniquely determined by its
action on Lf(V, W ) and, therefore, the algebras Lr(L(V, W )) and Lr(Lf(V, W ))
are isomorphic; see [14].

Applying the preceding considerations in an appropriate way, one may show
the following results. (Here means closure in a space of operators between
pre-Hilbert spaces with respect to the weak topology.)

span
(
La

0(I)a∗(H)La
0(I)

)
= E0

La
k(I)¯ La

` (I) = La
k+`(I).

Finally, the action of A0(I) on F0(I) may be extended (uniquely) to an action of
La(I) = A0(I) on F0(I). This suggests also to introduce the closures E ¯ F and
F(E) as a dual tensor product and a dual full Fock module, respectively.

Now let us return to our original subject. So far we said what we understand
by the maximal full Fock module associated with I. What could be the minimal
full Fock module? The answer is simple. A minimal Fock module should contain
everything within the maximal Fock module, what is cum grano salis generated
by by a∗(H), but not more.

Consequently, we restrict to the ∗–subalgebra A(I) of A0(I) generated by
a∗(H). The graduation on A0(I) gives rise to a graduation on A(I). Using
the notation

Aε =

{
A∗ if ε = 1
A if ε = −1

we find

Em := A(I) ∩ La
m(I)

= span
{
aεn(fn) . . . aε1(f1)

∣∣ fi ∈ H, (ε1, . . . , εn) ∈ {−1, 1}n,

n∑

k=1

εk = m
}
.

We set Z = E0 + C1. Again all Em are pre-Hilbert Z–Z–modules. However, now
we have Ek ¯ E` = Ek+`. Set E = E1. Clearly, E = span(Za∗(H)Z).

Definition 4.5. By the minimal full Fock module associated with the interacting
Fock space I we mean F0(I) = F(E).

Theorem 4.6. Theorems 4.1 and 4.2 remain true when restricted to A(I) and
F0(I). In particular, A 7→ a defines a ∗–algebra isomorphism A(I) → A(F0(I)).

Proof. Clear. ¤

Example 4.7. The converse of Example 3.19. Let F0(I) be the minimal Fock
module associated with an interacting Fock space based on H1; cf. Remark 2.3.
Then the state 〈Ω, •Ω〉 separates the elements of E. Obviously, the pre-Hilbert
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space F0(I)¯Ω as constructed in Example 3.19, is nothing but I and the creator
`∗(x)¯ |Ω〉〈Ω| on the former coincides with the creator a∗(h) on the latter, where
h = x¯ Ω. Therefore, the construction of the minimal Fock module is reversible.

We could ask, whether also the construction in Example 3.19 is reversible, in
the sense that it is possible to recover the Fock module F(E) we started with.
However, as the construction only involves the subspace F0(I) ¯ Ω and not the
whole space F0(I)¯G, we definitely may loose information. For instance, if E is
the direct sum of two Zi–modules Ei (i = 1, 2) with an obvious Z1 ⊕ Z2–module
structure, and if we choose a state 〈Ω1, •Ω1〉, which is 0 on Z2, then we loose all
information about E2.

Example 4.8. Let H be a pre-Hilbert space. Then the full Fock space I = F(H)
is itself an interacting Fock space. On the minimal Fock module F0(I) we may
represent not much more than the ∗–algebra A(F(H)) which is generated by all
creators a∗(f) = `∗(f) on the original Fock space. On the maximal Fock module
F0(I) we may represent the full ∗–algebra A0(F(H)). In particular, operators on
F(H) of the form z`∗(f)z′ (f ∈ H; z, z′ ∈ La

0(F(H))) are represented by creators
`∗(z`∗(f)z′) on F0(I).

For instance, in Example 2.7 we established an isometry ξ = V ∗U : Iω →
F(C) from the one-mode interacting Fock into the one-mode full Fock space. We
found ξa∗ξ∗ =

√
ωN`∗. This squeezed creator on the full Fock space, immediately,

becomes the creator `∗(
√

ωN`∗) on the maximal Fock module F0(F(C)) associated
with F(C).

It is noteworthy that all ingredients of the construction of F0(Iω) and F0(Iω),
being subsets ofA0(Iω), may be identified isometrically with ingredients of the cor-
responding construction of F0(F(C)) and F0(F(C)), being subsets of A0(F(C)),
via the mapping Ξ(•) = ξ • ξ∗.

What we did in Examples 2.7 and 4.8 for the one-mode interacting Fock space
consisted in two parts. Firstly, we constructed an isometry from Iω into F(C).
Under this isometry the creator a∗ on Iω became the squeezed creator

√
ωN`∗

on F(C). Secondly, after constructing the maximal Fock module F0(F(C)) the
squeezed creator became a usual creator on the maximal Fock module. In the
following section we will see that these two steps are possible in general for a wide
class of interacting Fock spaces.

5. Embeddable Interacting Fock Spaces

Definition 5.1. Let I =
⊕

n∈N0
Hn be an interacting Fock space based on H.

We say I is an embeddable interacting Fock space, if there exists an isometry
ξ : I → F(H), which respects the n–particle sector, i.e.

ξHn ⊂ H⊗n and ξΩ = Ω.

We say I is algebraically embeddable, if ξ maps into F(H).

The following two theorems show that there exist many embeddable and many
algebraically embeddable interacting Fock spaces. Actually, all known examples
of interacting Fock spaces fit into the assumptions of one of these two theorems.
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Theorem 5.2. Let I be an interacting Fock space based on H and define the
surjective linear operator Λ: F(H) → I by setting

Λ(fn ⊗ . . .⊗ f1) = a∗(fn) . . . a∗(f1)Ω and Λ(Ω) = Ω.

Then the following two conditions are equivalent.

(i) The operator Λ has an adjoint Λ∗ in L(I,F(H)).
(ii) There exists an operator L : F(H) → F(H) fulfilling LH⊗n ⊂ H⊗n, such

that

〈a∗(fn) . . . a∗(f1)Ω, a∗(gn) . . . a∗(g1)Ω〉 = 〈fn ⊗ . . .⊗ f1, Lgn ⊗ . . .⊗ g1〉.
Moreover, if one of the conditions is fulfilled, then I is embeddable.

Proof. Clearly Condition (i) implies Condition (ii), because L = Λ∗Λ has the
claimed properties. So let us assume that Condition (ii) is fulfilled.

Firstly, we show that I is embeddable. The operator L must be positive.
In particular, L is bounded below. Henceforth, by Friedrich’s theorem L has
a self-adjoint extension. Denote by λ the positive square root of this extension
(whose domain, clearly, contains F(H)). Then the equation ξa∗(fn) . . . a∗(f1)Ω =
λfn ⊗ . . .⊗ f1 defines an isometry ξ : I → F(H).

Secondly, we show existence of Λ∗. We have to show that for each I ∈ I there
exists a constant CI > 0, such that 〈ΛF, I〉 ≤ ‖F‖CI for all F ∈ F(H). We may
choose G ∈ F(H) such that ΛG = I. Then our assertion follows from

〈ΛF, I〉 = 〈ΛF, ΛG〉 = 〈F, LG〉 ≤ ‖F‖ ‖LG‖ .

¤

Theorem 5.3. Let I be an interacting Fock space based on H and suppose that
H has a countable Hamel basis. Then I is algebraically embeddable.

Proof. Let
(
ei

)
i∈N denote the Hamel basis for H. We may assume this basis to be

orthonormal. (Otherwise, apply the Gram-Schmidt orthonormalization procedure.)
Enumerate the vectors en

k = ekn ⊗ . . . ⊗ ek1 (k = (k1, . . . , kn) ∈ Nn) in a suitable
way. In other words, find a bijective mapping σ : N → Nn. Then apply the
orthonormalization to the total sequence

(
bn
σ(i)

)
i∈N of vectors in Hn where we set

bn
k = a∗(ekn) . . . a∗(ek1)Ω. The result of orthonormalization is another sequence(
cn
i

)
i∈N of vectors, some of which are 0 and the remaining forming an orthonormal

basis for Hn. Then

ξcn
i =

{
en
σ(i) for cn

i 6= 0
0 otherwise

defines the claimed isometry. ¤

We remark that ξ has an adjoint ξ∗ defined on the domain Dξ∗ = ξI ⊕ (ξI)⊥

dense in F(H). Clearly, this domain is mapped by ξ∗ onto I.
Before we show the implications of Definition 5.1, we provide a simple but useful

factorization Lemma about operators on tensor products of vector spaces.
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Lemma 5.4. Let U , V , W , and X be vector spaces and let S ∈ L(W,U) and
T ∈ L(V ⊗ W,X) be operators, such that Sw = 0 implies T (v ⊗ w) = 0 for all
v ∈ V . Then there exists an operator R ∈ L(V ⊗ U,X), such that

T = R(id⊗S).

Proof. Denote N = ker(S). Then there exists a subspace N 0 ⊂ W , such that
W = N 0 ⊕N and S ¹ N 0 is a bijective mapping onto SW . Analgously, we may
find (SW )0, such that U = SW ⊕ (SW )0. In this way we expressed S as the
mapping

S = (S ¹ N 0)⊕ 0: N 0 ⊕N −→ SW ⊕ (SW )0.

Defining the mapping

Sinv = (S ¹ N 0)−1 ⊕ 0: SW ⊕ (SW )0 −→ N 0 ⊕N ,

we find SinvS = 1⊕ 0 on N 0 ⊕N .
Set R = T (id⊗Sinv). Then for all v ∈ V and w ∈ N we have R(id⊗S)(v⊗w) =

0 = T (v ⊗ w) and for w ∈ N 0 we find R(id⊗S)(v ⊗ w) = T (v ⊗ SinvSw) =
T (v ⊗ w). ¤

The basis for our application of Lemma 5.4 is the identification

F(H) = H ⊗F(H) ⊕ CΩ. (5.1)

If S is a mapping on F(H), then by id⊗S we mean the mapping id⊗S ⊕ 0 acting
on the right-hand side of (5.1). We have the commutation relation

`∗(f)S = (id⊗S)`∗(f).

Notice also that F(H) ⊃ H ⊗F(H) ⊕ CΩ.

Theorem 5.5. Let I be an embeddable interacting Fock space based on H. Then
there exists a mapping κ : (H ⊗ Dξ∗ ⊕ CΩ) → Dξ∗ , respecting the n–particle
sectors, such that

κ`∗(f) = ξa∗(f)ξ∗

for all f ∈ H. In other words, the mapping a∗(f) 7→ κ`∗(f) extends to a ∗–algebra
monomorphism A(I) → La(Dξ∗) and the vacuum expectation is mapped to the
vacuum expectation.

If I is even algebraically embeddable, then κ`∗(f) is an element of La(F(H)).

Remark 5.6. Of course, κ`∗(f) has an adjoint (even an adjoint which leaves in-
variant the domain Dξ∗). However, notice that this does not imply that κ has an
adjoint.

Proof of Theorem 5.5. We have Λ`∗(f) = a∗(f)Λ. In particular, if ΛF = 0 for
some F ∈ F(H), then Λ(f ⊗ F ) = Λ(`∗(f)F ) = a∗(f)ΛF = 0 for all f ∈ H.

We set V = H, W = F(H), U = ξI, and X = F(H). Furthermore, we
define S = ξΛ ∈ L(W,U) and T = S ¹ (H ⊗ W ). Clearly, the assumptions of
Lemma 5.4 are fulfilled. Therefore, there exists a mapping R ∈ L(V ⊗ U,X) =
L(H ⊗ Dξ∗ ,F(H)), such that T (f ⊗ F ) = R(f ⊗ SF ) for all f ∈ H and all
F ∈ F(H).
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We have

ξa∗(f)ξ∗(ξΛ)F = ξa∗(f)ΛF = ξΛ`∗(f)F

= T (f ⊗ F ) = R(f ⊗ SF ) = R`∗(f)(ξΛ)F.

Since the domain of R`∗(f) is U and ξΛF (F ∈ F(H)) runs over all elements of
U , we find ξa∗(f)ξ∗ ¹ U = R`∗(f). We define κ ∈ L(H ⊗Dξ∗ ⊕CΩ, X) by setting

κ(f ⊗ F ) =

{
R(f ⊗ F ) for F ∈ ξI
0 for F ∈ (ξI)⊥

and κ(Ω) = 0. Then κ`∗(f) = ξa∗(f)ξ∗. Clearly, the range of κ is ξI, because
the range of ξa∗(f)ξ∗ is contained in ξI. ¤

We define λ = ξΛ and denote by λn the restriction of λ to the n–particle sector.
Notice that λn is a mapping H⊗n → H⊗n. Denote also by κn the restriction of κ
to the n–particle sector of Dξ∗ .

Corollary 5.7. λ fulfills

λ ¹ (H ⊗F(H)) = κ(id⊗λ).

In terms of n–particle sectors this becomes the recursion formula

λn+1 = κn+1(id⊗λn) and λ0 = idCΩ

for λn. The recursion formula is resolved uniquely by

λn = κn(id⊗κn−1) . . . (id⊗(n−1)⊗κ1) (n ≥ 1).

Proof. We have

κ(id⊗λ)(fn ⊗ . . .⊗ f1) = κ`∗(fn)λ(fn−1 ⊗ . . .⊗ f1)

= ξa∗(fn)ξ∗ξΛ(fn−1 ⊗ . . .⊗ f1) = ξΛ`∗(fn)(fn−1 ⊗ . . .⊗ f1)

= λ(fn ⊗ . . .⊗ f1).

¤
Corollary 5.8. We have

〈a∗(fn) . . . a∗(f1)Ω, a∗(gn) . . . a∗(g1)Ω〉
= 〈κn`∗(fn) . . .κ1`

∗(f1)Ω,κn`∗(gn) . . .κ1`
∗(g1)Ω〉.

Theorem 5.9. Let I be an algebraically embeddable interacting Fock space based
on H. Then the mapping

a∗(f) 7−→ `∗(κ`∗(f))
extends to a ∗–algebra monomorphism from A0(I) into the ∗–algebra of adjointable
operators on the maximal full Fock module F0(F(H)) associated with F(H). (Here
the full Fock space F(H) is interpreted as an interacting Fock space.) Also Theo-
rem 4.2 remains true.

Proof. κ`∗(f) = ξa∗(f)ξ∗ is an element of E0 = La
1(F(H)) and Ξ(•) = ξ • ξ∗ is

a ∗–algebra monomorphism A0(I) → A0(F(H)). Validity of Theorem 4.2 follows
by ξΩ = Ω. ¤
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6. The Symmetric Fock Space

In this section we discuss how the symmetric (or Bose) Fock space fits into
the set-up of interacting Fock spaces. In particular, we identify concretely several
mappings which played a crucial in the preceding section.

Let H be a pre-Hilbert space. On H⊗n (n ∈ N) we define a projection pn by
setting

pnfn ⊗ . . .⊗ f1 =
1
n!

∑

σ∈Sn

fσn
⊗ . . .⊗ fσ1 .

The range of this projection is the n–fold symmetric tensor product H⊗sn. By p we
denote the projection

⊕
n∈N0

pn on the full Fock space F(H) (where p0 = 1). The
range Γ(H) = pF(H) of p is the symmetric Fock space over H. Let N denote the
number operator on F(H), i.e. NFn = nFn for Fn ∈ H⊗n. By setting Hn = H⊗sn

and a∗(f) =
√

Np`∗(f) we turn Γ(H) into an interacting Fock space based on
H = H1. Indeed, from p`∗(f)p = p`∗(f) it follows that a∗(f) has an adjoint
`∗(f)p

√
N .

Defining ξ as the canonical embedding of Γ(H) into F(H), we see that Γ(H) is
algebraically imbeddable. Notice that ξ∗ = p. But also the stronger conditions of
Theorem 5.2 are fulfilled (even leaving invariant the algebraic domain). Indeed,
from the commutation relation `∗(f)

√
N =

√
N − 1`∗(f) we find that

a∗(fn) . . . a∗(f1)Ω = p
√

N . . .
√

N − n + 1`∗(fn) . . . `∗(f1)

= p
√

N . . .
√

N − n + 1fn ⊗ . . .⊗ f1,

i.e. Λ = p
√

N ! where
√

N ! denotes the operator sending Fn ∈ H⊗n to
√

n!Fn. Of
course, Λ∗ = ξΛξ. So, if we are sloppy in distinguishing between Γ(H) and the
subspace pF(H) of F(H), then Λ is symmetric and coincides more or less with λ.
Of course, L = pN !. The definition of a∗(f) yields directly κ = p

√
N . We may

verify explicitly the recursion formula in Corollary 5.7.
We easily verify the well-known CCR a(f)a∗(g)− a∗(g)a(f) = 〈f, g〉, or equiv-

alently
a(f)a∗(g) = a∗(g)a(f) + 〈f, g〉

Here we see that the algebra Z = E0, over which the minimal Fock module is a
two-sided module, contains already the quite complicated operator a∗(g)a(f) +
〈f, g〉 commuting with the number operator. The complications are caused by
the fact that the projection pn on the n–particle sector acts on all tensors of
its argument. This is extremely incompatible with what creators on a full Fock
space can do, which only act at the first tensor. Correspondingly, the additional
algebraic structure which we introduce in the module description has to do lot to
repair this ‘defect’.

On the other hand, it is well-known that the symmetric Fock space over L2(R+)
is isomorphic to the space of time ordered functions (henceforth, time ordered Fock
space) considered in Example 2.6. Also here we can write down the operator L.
However, if Fn(tn, . . . , t1) is a time-ordered function, and if we ‘create’ a function
fn+1, then we find fn+1(tn+1)Fn(tn, . . . , t1). In order to project this function to the
time-ordered subspace, we need only to look for the relation between tn+1 and tn.
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The ’deeper’ time arguments are not involved by the projection. This explains why
the module description of the time ordered Fock space is much more transparent
and also more illuminating than the module descritpion of the symmetric Fock
space Γ(L2(R+)).

We see that, although a module description is in principle always possible, we
must choose carefully for which of the interacting Fock spaces we try a module
description. A good criterion is to look at how complicated the algebra Z is.
Fortunately, in all applications there are natural choices for Z and the image of Z
in the algebra A(F(E)), usually, is much ‘smaller’ than A(F(E)).
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