ERRATA: EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM
(COSA, VOL. 1, NO. 3 (2007) 473–483)

P. SUNDAR AND HONG YIN

This note corrects a typographical error that appeared in the statement of Proposition 2.2, and the subsequent changes. The correct statement of the proposition is as given below:

Proposition 2.2: Suppose that \(g(t), \alpha(t), \beta(t) \) and \(\gamma(t) \) are integrable functions, and \(\beta(t), \gamma(t) \geq 0 \). For \(0 \leq t \leq T \), if

\[
g(t) \leq \alpha(t) + \beta(t) \int_t^T \gamma(\rho)g(\rho)d\rho
\]

then

\[
g(t) \leq \alpha(t) + \beta(t) \int_t^T \alpha(\eta)\gamma(\eta)e^{\int_\eta^t \beta(\rho)\gamma(\rho)d\rho}d\eta.
\]

In particular, if \(\alpha(t) \equiv \alpha, \beta(t) \equiv \beta \) and \(\gamma(t) \equiv 1 \), then \(g(t) \leq \alpha e^{\beta(T-t)} \).

Therefore, the following changes are to be made in the rest of the paper:

(i) The bound given in the proof of Proposition 2.3 changes to

\[
E^{\mathcal{F}_t}|Y(t)|^2 + E^{\mathcal{F}_t} \int_t^T \|Z(s)\|^2 ds \leq E^{\mathcal{F}_t}|\xi|^2 e^{2\|A\|(T-t)}.
\]

However, the statement of Proposition 2.3 is unaffected.

(ii) In the proof of Proposition 3.4, the estimate on \(|Y^n(t)|^2 \) in page 479 should read as follows:

\[
|Y^n(t)|^2 \leq e^{2\|A\|(T-t)} E^{\mathcal{F}_t}|\xi^n|^2.
\]

Let \(m < n \). Then the estimate (3.5) is not required since it is easy to note either directly or from equation (3.4) that

\[
|\tilde{Y}(t)|^2 + \int_t^T \|\tilde{Z}(s)\|^2 ds = 0
\]

on the set \(A_m = \{\omega : |\xi(\omega)| < m\} \), and \(\{A_m\} \) increases to an almost sure set as \(m \) increases to \(\infty \). This would prove Theorem 3.5 besides producing a simpler proof of Proposition 3.4.

P. Sundar: Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803
E-mail address: sundar@math.lsu.edu

Hong Yin: Department of Mathematics, University of Southern California, Los Angeles, CA 90089
E-mail address: hongyin@usc.edu