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ABSTRACT. We derive an expression in terms of the Wright function for the density of
the first-passage times (or FPT’s) for the Poisson-Erlang Lévy processes. For Poisson-
exponential processes, we establish an analogue of Zolotarev space-time duality between
the original process and its FPT process “truncated” at zero. We show that an asymptotic
duality holds in the sense of weak convergence, thereby providing an interpretation of the
Letac-Mora reciprocity. The corresponding limits in the sense of convergence in mean
and in mean square have an additional multiplier, which is also present in the asymptotic
relationship between the marginals of a Poisson-Erlang process and its “truncated” FPT
process. We prove that for Poisson-exponential processes, the FPT and the overshoot are
independent.

1. Introduction

The main focus of this work is to derive new fluctuation properties of the members
of a proper subclass of the family of the Poisson-gamma Lévy processes and to stress
connections between various distributions pertaining to this important class of stochastic
processes and the Theory of Special Functions. Our principal results are presented in
Section 3 as Theorems 3.1, 3.7, 3.9, 3.12, and 3.14. Theorem 3.1 provides a closed-form
expression in terms of the Wright special function (2.1) for the probability density func-
tion (or the p.d.f.) of the law of the first-passage time (or FPT) for a generic compound
Poisson–Erlang Lévy process. See also Remark 3.2.i.

Several of our results provide a probabilistic explanation of an important analytical
property which is hereinafter referred to as the Letac–Mora reciprocity (cf., for exam-
ple, [19, p. 25]). Theorem 3.12, which stipulates that for a certain family of the incre-
mental processes constructed starting from the FPT process, and for which the limits in
the sense of convergence in mean and in mean square differ from that in the sense of
weak convergence, is quite surprising (see also Remark 3.13). Letac–Mora reciprocity is
specified by Lemma 2.4. (We refer to [28] for a more comprehensive consideration of
this property in a related context.) In addition, we anticipate that our paper will motivate
further studies of more general FPT stochastic processes “truncated” at zero, which are
considered here for the first time (see below).

Each representative of the class of spectrally positive Poisson-gamma Lévy processes
is constructed starting from the corresponding member of the three-parameter family of
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compound Poisson-gamma distributions, which is described by Definition 2.3 and formu-
las (2.13)–(2.18). The class of the Poisson-gamma distributions was introduced in [6, p.
223] for modelling “the total rainfall for a given period”. More recently, these univari-
ate probability laws were widely used for fitting diverse clustered data. Thus, they often
provide the mathematical foundation for various stochastic models of Property and Casu-
alty Insurance. We refer to [9, Introduction], [28, Introduction], [18] and [8] for a review
of numerous applications and properties of the Poisson–gamma laws and various related
stochastic processes.

The class of Poisson-gamma Lévy processes is defined by (3.1). Its proper subclass,
which comprises the totality of the compound Poisson–Erlang Lévy processes, is de-
scribed just below that formula. For all the members of this subclass, it is relatively easy
to employ a simplified version of the Pecherskii–Rogozin identity in order to write down
both a representation for the upper tail of the law of the FPT in terms of the cumula-
tive distribution function of a specific marginal of the corresponding compound Poisson
process and the double Laplace transform of the p.d.f. of the law of the FPT (see [3,
p. 97, formula (1) and p. 94, formula (5)], respectively). However, “an attractive gen-
eral formula is unlikely to lead to explicit answers” (compare [3, p. 94, below formula
(5)]). Therefore, we regard the new closed-form representation (3.7) for the p.d.f. of the
law of the FPT for a generic compound Poisson–Erlang Lévy process to be a significant
result. Moreover, an attempt to extend our solution of this problem to the entire class of
the Poisson–gamma Lévy processes would require a prior development of new analytical
methods (see Remark 3.2.ii).

It is important that the class of Poisson-gamma distributions belongs to a wider power-
variance family (or the PVF) of the univariate probability laws. This family is indexed by
the power parameter p (whose domain is R1 \ (0, 1)) as well as the location and scaling
parameters, which are hereinafter denoted by µ and λ, respectively. The members of the
class of compound Poisson-gamma probability laws correspond to p ∈ (1, 2). Also, the
PVF includes the classes (2.11) and (2.12) of the scaled Poisson and gamma distributions,
as well as exponentially tilted positive stable laws with index α ∈ (0, 1) and exponentially
tilted spectrally negative stable laws with index α ∈ (1, 2] and skewness β = −1. (The
case α = 2 corresponds to the normal class.) More details on the PVF are given in [12,
Chapter 4], [24], [27], [28].

It is important that when considering the Letac–Mora reciprocity for the PVF, for
which p ∈ R1 \ (0, 1), one should exclude the values of p ∈ (2, 3) (see a comment
below formula (2.20) for more detail). For p ∈ (−∞, 0]∪ [3,+∞), the well-known prob-
abilistic interpretation of the Letac–Mora reciprocity is often called Zolotarev space–time
duality.

It is remarkable that for these values of p, Zolotarev duality can be expressed as an
elegant relationship between the p.d.f. of a marginal of a related spectrally negative Lévy
process and that of its FPT process (compare [23, Theorem 4.1 and Corollary 4.1]). For
p = 0, Zolotarev space–time duality is equivalent to the celebrated result on the law of
the FPT of scaled Brownian motion with a drift, which is employed for pricing American
stock options (compare [4, Corollary 7.2.6] or [23, Remark 4.1]). Other applications in
finance are discussed in [14]. In addition, some subtle results in this direction, which per-
tain to certain natural exponential families and Lévy processes, are given in [15, Theorem
1 and comment below that theorem], and [16, Theorem 2 and Corollary 3].
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It was demonstrated in [28] that Zolotarev–type duality per se does not hold in the
Poisson-gamma case for which p ∈ (1, 2) (with the exception of the self-reciprocal case
of p = 3/2 in Definition 2.3). In this case, Theorem 3.7 provides a probabilistic interpreta-
tion of the self–reciprocity of the class of Poisson–exponential distributions. Specifically,
we demonstrate that in this case, an analogue of Zolotarev space–time duality still holds,
but only between the “density components” of the spectrally positive compound Poisson–
exponential Lévy process which is constructed starting from its own Poisson–exponential
distribution, and the corresponding FPT process, which should be “truncated” at zero for
the result to remain valid. In addition, Theorem 3.9 extends the exact result of Theorem
3.7 to the case of an arbitrary Poisson–Erlang Lévy process stipulating the asymptotic
pseudo space-time duality. Its assertion also involves a truncation of the FPT process
at zero. Remark 3.8 addresses related aspects of Zolotarev space–time duality for the
spectrally negative members of the PVF.

Theorem 3.14 provides a simple probabilistic illustration of the analytical results [17,
Theorems 1–2]. See also Remark 3.15.

In Section 2, we introduce and derive some properties of the special functions which
are required in Section 3, assemble relevant facts on the class of Poisson-gamma distribu-
tions, and address some issues related to Letac–Mora reciprocity.

This paper is not self-contained. Therefore, we refer to [12] or [24] for the PVF,
to [1] or [21] for the properties of Lévy processes, to [17] for the Pecherskii–Rogozin
identity and Wiener–Hopf factorization for general univariate Lévy processes, and to [20]
for properties of the Wright and the generalized Mittag-Leffler functions.

2. Auxiliary Definitions and Results

First, we summarize some relevant notation and terminology. We will follow the cus-
tom of formulating various statements of distribution theory in terms of the properties
of random variables (or r.v.’s), even when such results pertain only to their distributions.
Hereinafter, R1

+ stands for the set of all positive reals. In what follows, the sign “ d
=” will

denote the fact that the distributions of (univariate) r.v.’s coincide. In the sequel, the sym-
bol “ d→” will be understood as weak convergence. We denote the càdlàg space equipped

with the Skorohod metric by D[0,∞), and the sign “
D[0,∞)
====” is understood as the fact that

the laws of two stochastic processes coincide in this space. An empty sum is interpreted
as zero, and the expressions a ∨ b and a ∧ b are understood as max(a, b) and min(a, b),
respectively. In the sequel, we will denote a sequence of i.i.d.r.v.’s which possess the same
distribution as r.v. Y by {Y(n), n ≥ 1}.

Throughout this work, we will use the family of Wright special functions which is
introduced by the following definition (compare [20, Section 2.3]):

Definition 2.1. The complex-valued Wright function φ(ρ, δ, z) of argument z ∈ C, which
is indexed by the real-valued parameter ρ ∈ (−1, 0) ∪ (0,∞) and the complex-valued
parameter δ ∈ C is hereinafter defined by the following convergent series:

φ(ρ, δ, z) :=

∞∑
k=0

zk

k! · Γ(ρk + δ)
. (2.1)
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For δ = 0, (2.1) is simplified as follows:

φ(ρ, 0, z) ≡
∞∑
k=1

zk

k! · Γ(ρk)
. (2.2)

Next, given integer n ≥ 1, set Z := (n+ 1) · (n−nz)1/(n+1).

Lemma 2.2. (i) For each fixed integer k ≥ 1,

φ′(n, k, z) ≡ φ(n, n+ k, z) = O(Z−n−k+1/2 · eZ) as z → +∞. (2.3)

(ii) For z ∈ C,
φ(n, 0, z) ≡ nz · φ′(n, 1, z). (2.4)

Proof. (i) From [20, Section 2.3] we have

φ(n, δ, z) = O(Z1/2−δ · eZ) as z → +∞. (2.5)

See also [28, Appendix A.1] for more detail on the terminology used below. We note that,
although additional exponential terms are present in the expansion of φ(n, δ, z) when
n > 1, these additional terms are subdominant compared to eZ on the positive real axis
so that the dominant behavior is given by (2.5) for n ≥ 1. Then φ′(n, k, z) ≡ φ(n, n +
k, z) = O(Z−n−k+1/2 · eZ) as z → +∞, which proves (2.3).
(ii) The validity of (2.4) follows by differentiation of (2.2) and comparing the result of
differentiation with (2.1). �

In the proof of Lemma 3.11 and Theorem 3.12.i, we will employ the family Eρ,δ(z)
of generalized Mittag-Leffler special functions. By analogy to [20, p. 190], the complex-
valued generalized Mittag-Leffler function Eρ,δ(z) of argument z ∈ C, which is indexed
by the parameters ρ and δ such that ρ ∈ R1

+, δ ∈ R1
+, and ρj + δ /∈ {0,−1,−2, . . .}

(j ∈ {0, 1, 2, . . . }) is hereinafter defined by the following convergent series:

Eρ,δ(z) :=
∞∑
j=0

zj

Γ(ρj + δ)
. (2.6)

Next, we proceed with the analytical description of the Poisson-gamma class, which is
characterized by the triplet of parameters {p ∈ (1, 2), µ ∈ R1

+, λ ∈ R1
+}. These param-

eters are commonly referred to as the power, location (or mean), and scaling parameters,
respectively; see [24] for more details. Given p ∈ (1, 2), µ ∈ R1

+, and λ ∈ R1
+, we

introduce the exponential tilting parameter

θp (= θ(p, µ, λ)) := λµ1−p/(p− 1). (2.7)

Subsequently, for the same range of the values of the triplet of parameters (p, µ, λ), set

Ap (= A(p, µ, λ)) := λµ2−p/(2− p); (2.8)

ρp := (2− p)/(p− 1) ∈ R1
+. (2.9)

The probabilistic meaning of the parameters Ap and ρp introduced by (2.8) and (2.9) is
clarified by (2.13), (2.17) and by (2.16), respectively. In what follows, log stands for the
natural logarithm of a positive real argument, whereas Γ(δ, x) :=

∫∞
x
uδ−1 · e−u · du

(with δ ∈ R1 and x ∈ R1
+) denotes the complement of the incomplete gamma function.

The following definition is consistent with [24, Proposition 1.1, Theorem 1.1, errata].
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Definition 2.3. Given p ∈ (1, 2), µ ∈ R1
+ and λ ∈ R1

+, we define both the corresponding
Poisson-gamma r.v. Twp(µ, λ) and its probability law by means of the following Lévy
representation for the cumulant-generating function ζp,µ,λ(·):

ζp,µ,λ(s) = logEesTwp(µ,λ)

= Ap

{(
1− s

θp

)−ρp − 1
}
=

∫ ∞

0+

(esx − 1)ωp,µ,λ(dx).
(2.10)

Here, the values of θp, Ap and ρp are given by (2.7)–(2.9), s < θp, whereas the spectrally
positive Lévy measure ωp,µ,λ(·) of the infinitely divisible law of the r.v. Twp(µ, λ) is
such that ∀y ∈ R1

+, ωp,µ,λ({(y,+∞)}) = Ap · Γ(ρp, θpy)/Γ(ρp).

Throughout this paper, we employ the mean-value parameterization for the families
of Poisson-gamma, scaled Poisson and gamma distributions, because it is more conve-
nient for describing our results and is consistent with those employed in [12] and [24].
However, since this parameterization of the class of gamma distributions differs from the
standard parameterization of this family, we now employ the former one to describe the
families of the scaled Poisson and gamma probability laws.

By analogy to [24, formula (2.9)], given µ ∈ R1
+ and λ ∈ R1

+, we define the corre-
sponding (discrete) scaled Poisson r.v. Tw1(µ, λ) as follows:

Tw1(µ, λ)
d
= λ−1 · Tw1(µλ, 1)

d
= λ−1 · Poiss(µλ). (2.11)

In particular, Tw1(µ, 1)
d
= Poiss(µ) (compare to (2.17)).

Subsequently, given arbitrary fixed values of the mean parameter µ ∈ R1
+ and the

shape (or scaling) parameter λ ∈ R1
+, the r.v. Tw2(µ, λ) is characterized by its p.d.f.

f2,µ,λ(x) := (λ/µ)λ · xλ−1 · exp{−(λ/µ) · x}/Γ(λ), where x ∈ R1
+. (2.12)

The r.v. Tw2(µ, λ) is said to have the gamma law with parameters µ and λ. Also, we
extend the leftmost equation in (2.10) and set ζp,µ,λ(s) := log E exp{s · Twp(µ, λ)} for
arbitrary fixed values of p ∈ [1, 2], µ ∈ R1

+ and λ ∈ R1
+.

Next, we review relevant properties of the class of compound Poisson-gamma distri-
butions {Twp(µ, λ), p ∈ (1, 2), µ ∈ R1

+, λ ∈ R1
+}. This can be done via a character-

ization of the probabilistic structure of the law of each member of this class, which was
described analytically in Definition 2.3. First, given p ∈ (1, 2), µ ∈ R1

+ and λ ∈ R1
+, it

follows from (2.10) that

P{Twp(µ, λ) = 0} = exp{ lim
s→−∞

ζp,µ,λ(s)} = exp{−Ap} (2.13)

(compare [10, p. 504]; [12, formula (4.29)]). By (2.13), Twp(µ, λ) has a positive mass
at zero. In addition, this non-negative r.v. has an absolutely continuous component on
R1

+, whose density is denoted by fp,µ,λ(u). Its infinite-series representation can be found
in [10, p. 504] or [12, Subsection 4.2.4]. It is important that fp,µ,λ(u) can also be ex-
pressed in terms of a member of a proper subclass of the family (2.1), which is charac-
terized by the values of ρ ∈ R1

+ and δ = 0 (compare to (2.2)). Thus, given p ∈ (1, 2),
µ ∈ R1

+, and λ ∈ R1
+, [27, formula (3.25)] yields that for u ∈ R1

+, fp,µ,λ(u) can be
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expressed in terms of the parameter ρ = ρp as follows:

fp,µ,λ(u) = u−1 · exp
{
− ρ+ 1

ρ
· λ · µρ/(ρ+1) − (ρ+ 1) · λµ−1/(ρ+1)u

}
× φ(ρ, 0, (ρ+ 1)ρ+1λρ+1uρ/ρ).

(2.14)

Next, we proceed with the compound Poisson representation for a generic member of
the class {Twp(µ, λ), p ∈ (1, 2), µ ∈ R1

+, λ ∈ R1
+}. To this end, fix the arbitrary

p ∈ (1, 2), µ ∈ R1
+, λ ∈ R1

+, and consider independent r.v.’s {Hn, n ≥ 1} which
have a specific common gamma distribution such that for each integer n ≥ 1, the r.v.
Hn (= Hn(p, µ, λ))

d
= Tw2(µH, λH). The law of Tw2(µH, λH) is characterized by

µH := ρp/θp = (2− p) · µp−1/λ; (2.15)

λH := ρp. (2.16)

Also, consider a Poisson-distributed counting r.v. Tp with mean Ap, which is assumed to
be independent of the i.i.d.r.v.’s {Hn, n ≥ 1}:

Tp
d
= Tw1(Ap, 1)

d
= Poiss(Ap). (2.17)

In view of [10, p. 505],

Twp(µ, λ)
d
=

Tp∑
n=1

Hn. (2.18)

It follows from (2.9) that ρ3/2 = 1. A subsequent application of (2.16) stipulates that
in the case where p = 3/2, λH = 1. By (2.18), the r.v. Tw3/2(µ, λ) can be characterized
as the Poisson sum of the independent r.v.’s {Tw(n)

2 (θ−1
3/2, 1), n ≥ 1} with common expo-

nential distribution Tw2(θ
−1
3/2, 1) (compare [25, formula (2.4)]). In view of the above, the

counting r.v. Tw1(A3/2, 1) does not depend on the i.i.d.r.v.’s {Tw(n)
2 (θ−1

3/2, 1), n ≥ 1}.
Also, it follows from [28, formulas (4.17)–(4.18)] that in the case where p = 3/2, (2.14)
can be rewritten as follows:

f3/2,µ,λ(y) =
1

y
· e−θ3/2y−A3/2φ(1, 0, 4λ2y) =

2λ
√
y
· e−θ3/2(y+µ)I1(4λ

√
y), (2.19)

where y ∈ R1
+. Hereinafter, Iν(·) denotes the modified Bessel function of the first kind of

order ν (cf., for example, [7, formula (8.445)]). In this paper, we will consider the case
where ν ∈ {0; 1} (compare to (3.10)). See [9, Sections 1–2]; [25, Section 2] for a review
of the class of Poisson-exponential distributions.

The following reciprocity transformation of the PVF was described in [19, p. 25]:

p→ p′ := 3− p; µ→ µ′ := 1/µ; λ′ := λ. (2.20)

Recall that one should exclude values of p ∈ (2, 3). Otherwise, one obtains that p′ ∈
(0, 1), which contradicts [12, Proposition 4.2]. It is also relevant that although positive
stable distributions with index α ∈ (0, 1/2) do not possess dual probability distributions
per se, but [30, end of Section 2.10] suggests the consideration of the so-called “trans-
stable” signed measures in lieu of those distributions.
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For arbitrary values of p ∈ (1, 2), µ ∈ R1
+ and λ ∈ R1

+, the mapping (2.20) in-
terchanges the quantities θp and Ap (which are defined by (2.7) and (2.8), respectively).
Namely,

A(p′, µ′, λ′) = θ(p, µ, λ); θ(p′, µ′, λ′) = A(p, µ, λ). (2.21)

Lemma 2.4. For arbitrary values of p ∈ [1, 2], µ ∈ R1
+ and λ ∈ R1

+, the collection
{ζp,µ,λ(s), ζ3−p,1/µ,λ(−s)} constitutes a pair of inverse functions. In particular, the
sets {ζ3/2,µ,λ(s),−ζ3/2,1/µ,λ(−s)} and {ζ1,µ,λ(s),−ζ2,1/µ,λ(−s)} are pairs of inverse
functions.

Proof. See [24, Proposition 1.1] and [28, Lemma 1]. �

In the case where the reciprocal pair {p, p′} coincides with the two–point set {1; 2},
and for an arbitrary fixed µ ∈ R1

+, a probabilistic interpretation of the reciprocity of the
pair {Tw1(µ, 1), Tw2(1/µ, 1)} is given by the well-known result on the Poisson flow of
arrivals when the inter-arrival times are independent and exponential.

3. Main Results

Fix arbitrary values of p ∈ (1, 2), µ ∈ R1
+ and λ ∈ R1

+, and consider the Poisson-
gamma Lévy process {Xp,µ,λ(t), t ≥ 0} (See [18] or [26, Definition 3.1] for the descrip-
tion of a more general class of Hougaard processes, for which p ∈ R1 \ (0, 1).)

By [1, p. 11], it suffices to define a Lévy process by virtue of its increment in unit time.
Therefore, set

Xp,µ,λ(1)
d
= Twp(µ, λ). (3.1)

In view of (2.10) and (3.1), each such Lévy process is a subordinator.
The proper subclass of the family of the Poisson-gamma Lévy processes, whose mem-

bers are called the compound Poisson–Erlang Lévy processes, corresponds to the values
of p = 1 + 1/(n + 1) for some integer n ≥ 1, whereas µ and λ take on arbitrary fixed
values in R1

+. Evidently, (2.9) yields that the condition p = 1 + 1/(n + 1) is equivalent
to assuming that ρp = n for some integer n ≥ 1. (A subsequent combination of (2.16)
and (2.18) stipulates that the shape (or scaling) parameter λH of the gamma-distributed
r.v.’s {Hn, n ≥ 1} is a positive integer and hence, the i.i.d.r.v.’s which emerge in the
compound Poisson representation (2.18) of the increment of this process in unit time are
Erlang-distributed.)

By [26, Proposition 3.2.i], this process has the following marginals:

Xp,µ,λ(t)
d
= Twp(µ · t, λ · tp−1), where t ∈ R1

+ is arbitrary and fixed. (3.2)

A combination of (2.14), (3.1), (3.2) yields that for p ∈ (1, 2) and y > 0, the “density
component” fXp,µ,λ(t)(y) of the Poisson-gamma r.v. Xp,µ,λ(t) is as follows:

fXp,µ,λ(t)(y) = y−1 · φ(ρ, 0, (ρ+ 1)ρ+1(λt1/(ρ+1))ρ+1yρ/ρ)

× exp
{
− ρ+ 1

ρ
· λt1/(ρ+1)(µt)ρ/(ρ+1) − (ρ+ 1)λt1/(ρ+1)(µt)−1/(ρ+1)y

}
=

1

y
· e−Apt−θpyφ(ρ, 0, (ρ+ 1)ρ+1λρ+1tyρ/ρ)

=
1

y
· e−Apt−θpy · φ(ρ, 0,Apθ

ρ
pty

ρ).

(3.3)
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Also, it follows from (2.13) and (3.2) that for each t > 0,

P{Xp,µ,λ(t) = 0} = exp{−Ap · t}. (3.4)

Given real u ≥ 0, we introduce the FPT and the overshoot (over the level u) as follows:

τu := inf{t > 0 : Xp,µ,λ(t) > u}; (3.5)

γu := Xp,µ,λ(τu+)− u. (3.6)

A subsequent combination of the contradiction argument with the strong law of large
numbers for Lévy processes (cf., for example, [1, p. 92]) implies that ∀u ∈ R1

+, the r.v. τu
is finite a.s. Hence, in this case one does not have to impose an additional assumption that
τu <∞ in the definition of the overshoot by (3.6) for the specific process {Xp,µ,λ(t), t ≥
0} (compare [22, p. 203]). Also, it follows from a combination of (2.10) with [1, p. 77,
Theorem 4] that for u ∈ R1

+, τu = inf{t > 0 : Xp,µ,λ(t) > u} = inf{t > 0 :
Xp,µ,λ(t) ≥ u} (compare [22, p. 203], where the versions of (3.5)–(3.6) were employed).

Set X := θpu. The following assertion generalizes [3, Section 8.4, formulas (11)–(12)]
to the case of a compound Poisson–Erlang Lévy process with ρp ∈ N.

Theorem 3.1. Consider a compound Poisson–Erlang Lévy process {Xp,µ,λ(t), t ≥ 0}
which is introduced below (3.1) with p = 1+1/(n+1) for some integer n ≥ 1, and where
the parameters µ and λ take on arbitrary fixed values in R1

+. Then given level u ∈ R1
+,

the law of a non-negative r.v. τu defined by (3.5) is absolutely continuous and possesses
the following p.d.f.:

qn,u(y) = Ap ·exp{−X −Apy}·
n∑
k=1

X k−1 ·φ(n, k,ApXny), where y ∈ R1
+. (3.7)

Proof. Recall that the condition p = 1+1/(n+1) is equivalent to assuming that ρp = n
for some integer n ≥ 1. Similar to [3, p. 97], define the Laplace transforms

q∗n(u;w) :=

∫ ∞

0

e−wyf(y) dy and ∗q∗n(s;w) :=

∫ ∞

0

e−suq∗n(u;w) du.

Here, the argument w > −Ap. Set a (= a(n,w)) := (Ap/(Ap +w))1/n. It then follows
from [3, p. 94, formula (5)] that

∗q∗n(s;w) =
Ap{(θp + s)n − θnp }

s{(Ap + w)(θp + s)n −Apθnp }
=

an{(θp + s)n − θnp }
s{(θp + s)n − (a · θp)n}

.

Since ∗q∗n(s;w) → 0 uniformly as |s| → ∞, the inverse Laplace transform q∗n(u;w) is
given by

q∗n(u;w) =
an

2πi

∫ c+∞i

c−∞i

es·u{(θp + s)n − θnp }
{(θp + s)n − (a · θp)n}

ds

s
, (3.8)

where c > 0 is chosen so that the integration path lies to the right of all the poles of the
integrand. The denominator in braces can be written as

(θp + s− ae1)(θp + s− ae2) . . . (θp + s− aen), where er := exp(2πir/n),

so that the integrand possesses simple poles at sr = (a · er−1)θp, where 1 ≤ r ≤ n. The
residue of {(θp+ s)n− (a · θp)n}−1 is readily shown to be er/(n(a · θp)n−1). Hence, by
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the residue theorem

q∗n(u;w) =
e−X

n

n∑
r=1

exp{aerX}aer(1− an)

1− aer
=
e−X

n

n∑
r=1

exp{aerX}
n∑
k=1

(aer)
k,

since the sum of the finite geometric series
n∑
k=1

(aer)
k =

aer(1− (aer)
n)

1− aer
=
aer(1− an)

1− aer
.

Thus,

q∗n(u;w) =
e−X

n

∞∑
m=0

Xm

m!

n∑
k=1

n∑
r=1

(aer)
m+k =

e−X

n

∞∑
m=0

Xm

m!

n∑
k=1

am+kξk,

where

ξk =

n∑
r=1

em+k
r =

1− e2πi(m+k)

1− e2πi(m+k)/n
=

{
n if m = n(j + 1)− k, j = 0, 1, 2, . . .
0 otherwise.

This yields that

q∗n(u;w) = e−X
n∑
k=1

∞∑
j=0

Xn(j+1)−k

(n(j + 1)− k)!
an(j+1)

= e−X
n∑
k=1

∞∑
j=0

Xnj+k−1

Γ(nj + k)

(
Ap

Ap + w

)j+1
(3.9)

upon making the change of summation index k 7→ n− k + 1.
The inverse Laplace transform of (Ap/(Ap + w))j+1 is Aj+1

p e−Apyyj/j!. Hence,
upon taking the inverse Laplace transform of the last expression with respect to w, we
finally obtain that

qn(u, y) = Ap exp{−X −Apy}
n∑
k=1

X k−1 ·
∞∑
j=0

(ApXny)j

j! Γ(nj + k)
.

The infinite sum which emerges on the right-hand side of the above equation is recognized
as φ(n, k,ApXny), thus proving the theorem. �

Remark 3.2. (i) In the case where p = 3/2 and for each fixed u ∈ R1
+, the distribution of

τu was derived in [3, Section 8.4, formulas (11)–(12)]. Namely, it follows from [3] that
given u ∈ R1

+, the law of the non-negative r.v. τu is absolutely continuous and possesses
the following p.d.f.:

A3/2 · e−(θ3/2·u+A3/2·y) · I0(4λ · √uy), where y ≥ 0. (3.10)

We point out that I0(2 · z1/2) ≡ φ(1, 1, z) (compare to (2.4), (2.19) and [28, for-
mula (4.16)]). Hence, (3.10) is consistent with (3.7) when n = 1. Moreover, [3, p. 98]
anticipated a possibility of the derivation of (3.7) for n ≥ 2.
(ii) When ρ is non-integer, the integrand in (3.8) (with the index n replaced by ρ) has,
in addition to the simple poles sr, a branch point at s = −θp. It then becomes neces-
sary to introduce a branch cut in the complex s-plane along (−∞,−θp], which results in
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an additional contribution to (3.7) when inverting the Laplace transform in the form of a
complicated infinite integral.

Next, a combination of (2.18), (3.1)–(3.5) implies that the r.v.

τ0
d
= Tw2(A−1

p , 1). (3.11)

Similar to the derivation of (3.11), a combination of (2.18) with [22, p. 204, line 11]
implies that the overshoot over the level 0, i.e., γ0, is distributed as follows:

γ0
d
= Tw2(ρp/θp, ρp). (3.12)

In what follows, we will denote the p.d.f. of γ0 by f(y). By (2.12),

f(y) = θρpp · yρp−1 · exp{−θpy}/Γ(ρp), where y ∈ R1
+. (3.13)

For p = 3/2, (3.9) implies that for a given level u ∈ R1
+, the Laplace transform

q∗1(u;w) =
A3/2

A3/2 + w
· exp

{
−

θ3/2w

A3/2 + w
· u

}
, where w > −A3/2. (3.14)

Observe that a combination of (3.14) with (2.7)–(2.10) yields the following new important
decomposition of the r.v. τu into the sum of two independent components:

τu
d
= Tw2(A−1

3/2, 1) + Tw3/2(u/µ, λ
√
u), where u ∈ R1

+ is fixed. (3.15)

Also, it easily follows from (3.2) and (3.11) that in this case, the laws of the independent
r.v.’s which appear on the right-hand side of (3.15) coincide with those of the r.v.’s τ0 and
X3/2,1/µ,λ(u), respectively. We will pursue this observation further in Theorem 3.7.

It is common to study the FPT stochastic process {τu, u ≥ 0}, where the level u ≥ 0
is regarded as the time argument. In this paper, we also pursue the investigation of the
FPT stochastic process “truncated” at zero:

Rx := τx − τ0, where x ≥ 0. (3.16)

Evidently, R0 = 0. In addition, it follows from [22, p. 204] that ∀x ∈ R1
+,

Rx =

{
τ̂x−γ0 if γ0 < x,
0 otherwise.

(3.17)

Hereinafter, {τ̂y, y ≥ 0} is the FPT process constructed according to (3.5) starting from
the process X̂p,µ,λ(t) := Xp,µ,λ(t+ τ0)−Xp,µ,λ(τ0). Here, the time argument t ≥ 0. It

follows from [22, pp. 197 and 204] that since X̂p,µ,λ(t)
D[0,∞)
==== Xp,µ,λ(t), the stochastic

process τ̂y
D[0,∞)
==== τy, y ≥ 0 (Recall that here, the level y ≥ 0 is regarded as the time

variable.)

Lemma 3.3. For each fixed u ≥ 0, the r.v.’s Ru and τ0 are independent.

Proof. By [22, p. 197, Theorem 18 and p. 204, lines 20–21], the r.v.’s Ru and γ0 do not
depend on the r.v. τ0. The remainder of the proof follows from (3.17) and the fact that a
constant does not depend on any r.v. �
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Lemma 3.4. Consider the stochastic process {Ru, u ≥ 0} defined by (3.16). Then
(i) For arbitrary fixed ρp ∈ R1

+ and for an arbitrary fixed u ∈ R1
+, the r.v. Ru has the

following point mass at zero:

P{Ru = 0} = Γ(ρp,X )/Γ(ρp). (3.18)

(ii) Suppose that ρ (= ρp) = n ∈ N. Then for arbitrary u ∈ R1
+, the Lebesgue

decomposition of the distribution of the non-negative r.v. Ru does not have a continuous-
singular component. The density gRu(y) of the absolutely continuous component of the
law of the r.v. Ru admits the following closed-form representation over y ∈ R1

+:

gRu(y) = exp{−X −Apy} · Ap · Xn ·
n∑
k=1

X k−1 · φ(n, n+ k,ApXny). (3.19)

(iii) For p = 3/2, the corresponding marginals of the stochastic process {Ru, u ≥ 0}
coincide in law with those of the Lévy process {X3/2,1/µ,λ(u), u ≥ 0}.

Proof. (i) Given u ∈ R1
+, a combination of (3.16)–(3.17) yields that the following events

are identical: {Ru = 0} = {τu = τ0} = {γ0 > u}. The validity of (3.18) is then
obtained by combining the previous identity between the three events with (2.12) and
(3.12).
(ii) First, we combine the formula of total probability with (3.13), (3.17) and Lemma 3.3.
Hence, one ascertains that for fixed x ∈ R1

+ and u ∈ R1
+,

P{Rx ≤ u} =

∫ ∞

0

P{Rx ≤ u|γ0 = v}f(v) · dv =

∫ x

0

P{τ̂x−v ≤ u}f(v)dv

+

∫ ∞

x

P{0 ≤ u|γ0 = v}f(v)dv = P{Tw2(n/θp, n) > x}

+

∫ x

0

P{τx−v ≤ u} · Γ(n)−1 · θnp · vn−1 · e−θpv · dv.

(3.20)

We differentiate the rightmost expression in (3.20) with respect to u and recall (3.7) to
obtain that ∀x ∈ R1

+ and ∀u ∈ R1
+,

d

du
P{Rx ≤ u} = Γ(n)−1θnp ·

∫ x

0

qn,x−v(u) · vn−1 · exp{−θpv} · dv

= Γ(n)−1θnpAp · exp{−θpx−Apu} ·
n∑
k=1

θp
k−1

×
∫ x

0

(x− v)k−1vn−1 · φ(n, k,Apθ
n
p (x− v)n · u) · dv.

(3.21)

Next, we make the change of variable w = θp · v. Hence, the expression which emerges
on the right-hand side of (3.21) can be rewritten as follows:

Ap

Γ(n)
e−X−Apu

n∑
k=1

∫ X

0

(X − w)k−1wn−1φ(n, k,Ap(X − w)nu) dw

=
Ap

Γ(n)
e−X−Apu

n∑
k=1

∞∑
r=0

(Apu)
r

r! Γ(nr + k)

∫ X

0

(X − w)nr+k−1wn−1dw
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=
Ap

Γ(n)
e−X−Apu

n∑
k=1

Xn+k−1
∞∑
r=0

(ApuXn)r

r! Γ(nr + k)

∫ 1

0

(1− y)nr+k−1yn−1dy

= ApXne−X−Apu
n∑
k=1

X k−1
∞∑
r=0

(ApuXn)r

r! Γ(nr + n+ k)

upon evaluation of the integral as a beta function. Identification of the inner sum in terms
of the Wright function (2.1) then shows that this equals the expression on the right-hand
side of (3.19).

To complete the proof of part (ii), we point out that it easily follows from (3.16) that the
r.v. Ru is non-negative, since τu ≥ τ0. Also, (2.1) yields that the “density component”
gRu(y) is strictly positive on R1

+. Hence, it remains to demonstrate that the law of the r.v.
Ru is comprised of the point mass at zero given by (3.18) and the absolutely continuous
component whose “density” is specified by (3.19). To this end, fix an integer n ∈ N.
Recall that X = θp · u, and consider the following function:

Fn(X ) := P{Ru = 0}+
∫ ∞

0

gRu(y) dy

=
Γ(n,X )

Γ(n)
+

∫ ∞

0

e−X−ApyApXn
n∑
k=1

X k−1φ(n, n+ k,ApXny) dy

by (3.18)–(3.19). Next, the integral term can be evaluated as follows:

ApXne−X
n∑
k=1

X k−1

∫ ∞

0

e−Apyφ(n, n+ k,ApXny) dy

= ApXne−X
n∑
k=1

X k−1 ·
∞∑
r=0

(ApXn)r

r!Γ(nr + n+ k)

∫ ∞

0

e−Apyyrdy

= Xne−X
n∑
k=1

X k−1
∞∑
r=0

Xnr

Γ(nr + n+ k)
= Xne−X

∞∑
r=0

Xnr
n∑
k=1

X k−1

Γ(nr + n+ k)
.

At the same time, the ratio

Γ(n,X )

Γ(n)
= 1−Xne−X

∞∑
r=0

X r

Γ(r + n+ 1)
.

In this last sum we divide the index of summation r into (0, n, 2n, . . .), (1, n + 1, 2n +
1, . . .), ... , (n− 1, 2n− 1, 3n− 1, . . .) to obtain that ∀n ≥ 1, the subtrahend

Xne−X
∞∑
r=0

X r

Γ(r + n+ 1)
= Xne−X

×

{ ∞∑
r=0

Xnr

Γ(nr + n+ 1)
+

∞∑
r=0

Xnr+1

Γ(nr + n+ 2)
+ · · ·+

∞∑
r=0

Xnr+n−1

Γ(nr + 2n)

}

= Xne−X
∞∑
r=0

Xnr
n∑
k=1

X k−1

Γ(nr + n+ k)
.
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Hence, Fn(X ) ≡ 1, which excludes the existence of a continuous-singular component.
(iii) For u = 0, this is trivial. Hence, suppose that u ∈ R1

+. A combination of (2.21), (3.4)
and (3.18) implies that in the case where p = 3/2, P{Ru = 0} = Γ(1, θ3/2u)/Γ(1) =

e−θ3/2·u = P{X3/2,1/µ,λ(u) = 0}. Therefore, the values of the point mass at zero for
the r.v.’s Ru and X3/2,1/µ,λ(u) coincide.

Next, the closed-form expression for the density component of the r.v. X3/2,1/µ,λ(u)
is obtained by combining (2.20)–(2.21) with (3.3). The verification of the fact that it is
identical to that of the r.v. Ru in the case where n = 1 (which emerges on the right-hand
side of (3.19)) is straightforward and involves an application of (2.3)–(2.4). �

In turn, Lemma 3.4.iii yields the following corollary, which pertains to the “density
components” gRu(·) and fX3/2,µ,λ(t)(·) of the r.v.’s Ru and X3/2,µ,λ(t), respectively.

Corollary 3.5. Suppose that ρp = n = 1, and fix arbitrary µ ∈ R1
+ and λ ∈ R1

+. Then
given t > 0 and u > 0,

t · gRu(t) = t · fX3/2,1/µ,λ(u)(t) = t · f3/2,u/µ,λ√u(t)
= u · f3/2,µt,λ√t(u) = u · fX3/2,µ,λ(t)(u).

(3.22)

Proof. It follows from a combination of Lemma 3.4.iii, (2.19), (3.2) and some algebra.
�

Remark 3.6. It relatively easily follows from [22, p. 204] that for each p ∈ (1, 2), the
“truncated” FPT stochastic process {Ru, u ≥ 0} is a process with independent increments
which starts from zero such that for each value of the “time variable” u ∈ R1

+, the r.v. Ru

has a positive mass at zero. However, ∀p ∈ (1, 2) \ {3/2}, it is not a compound Poisson
Lévy process. This is obtained by combining (3.18) with the well-known fact that the
expression on the right-hand side of (3.18) is equivalent to (θpu)

ρp−1 · e−θpu/Γ(ρp) as
u→ ∞. It remains to employ a contradiction argument, since in view of this asymptotics,
the logarithm of the expression (3.18) is a linear function of the argument u if and only if
p = 3/2. Clearly, this contradicts (3.4).

The following assertion partly supports the statement made in [19, p. 24, lines 19–20]
in the self-reciprocal case of p = 3/2.

Theorem 3.7. Assume that ρp = n = 1, and fix arbitrary µ ∈ R1
+ and λ ∈ R1

+. Suppose

that the “time” variable u ∈ [0,∞). Then Ru
D[0,∞)
==== X3/2,1/µ,λ(u).

Proof. First, fix an arbitrary u > 0. By Lemma 3.4.iii, the r.v. Ru
d
= X3/2,1/µ,λ(u).

Next, since by Remark 3.6, the “truncated” FPT process {Ru, u ≥ 0} (which starts from
the origin) has independent increments, it follows with some effort from a combination
of (3.2) with [24, Theorem 2.1] and [26, Proposition 3.2] that for p = 3/2 (or ρp = 1),
this process also has stationary increments. Hence, it is a compound Poisson-exponential
Lévy process such that R1

d
= X3/2,1/µ,λ(1)

d
= Tw3/2(1/µ, λ). The rest is straightfor-

ward, since by [1, p. 11], a Lévy process is completely characterized by its increment in
unit time. �

Remark 3.8. Corollary 3.5 and Theorem 3.7 provide the probabilistic interpretation of the
self-reciprocity of the Poisson-exponential class of distributions in terms of the fluctuation
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properties of the related Poisson-exponential Lévy processes. In contrast to [23, Theorem
4.1], which holds for Hougaard processes constructed starting from the spectrally negative
stable laws with index α ∈ (1, 2] and skewness β = −1, here one should subtract τ0 in
Lemma 3.4.iii, Corollary 3.5, and Theorem 3.7 in order to ascertain that the marginals of
such modified FPT processes remain within the PVF. Nevertheless, Theorem 3.7 is similar
to the fluctuation property of the class of the exponentially tilted spectrally negative stable
processes with 1 < α ≤ 2. In the latter case, the analogue of (3.22) goes back to [29, p.
203, line 1]. See also [21, formula (46.12)].

The following result is an asymptotic version of (3.22), which is valid for any ρp ≥ 1.

Theorem 3.9. Suppose that p = 1+1/(n+1), where n ≥ 1 is a fixed integer, real u > 0,
and the time variable t→ +∞. Then the “density components” fXp,µ,λ(t)(·) and gRu(·)
of the r.v.’s Xp,µ,λ(t) and Ru, respectively, are related as follows:

t · gRu(t) ∼ n−1ufXp,µ,λ(t)(u). (3.23)

Proof. Set z := tApXn = tApθ
n
pu

n. A combination of Lemma 3.4 with (2.3) yields that

t · gRu(t) = e−Apt−θpu · t · d
dt
φ(n, k,Ap · Xn · t)

×
n∑
k=1

X k−1φ(n, n+ k,ApXnt)

φ(n, n+ 1,ApXnt)
∼ e−Apt−θpu · tApXn · φ′(n, 1, z)|z=tApXn

(3.24)

as t → +∞, since by (2.3), the finite sum which emerges in (3.24) is either 1 (if n = 1)
or

1 +

n∑
k=2

O((X/t)(k−1)/(n+1))

in this limit (if n ≥ 2). A subsequent combination of (2.4) with (3.24) stipulates that

t · gRu(t) ∼
1

n
· e−Apt−θpu · φ(n, 0,Apθ

n
p t · un) as t→ +∞. (3.25)

To complete the proof, it remains to combine (3.3) and (3.25), since ρ = n. �

Remark 3.10. In the case where p = 3/2, (3.23) is consistent with (3.22).

Next, for arbitrary real u ≥ 0 and L ≥ 0, we introduce the family of the incremental
stochastic processes which is indexed by the level u:

Iu(L) := Ru+L −Ru = τu+L − τu. (3.26)

Hereinafter, L is recognized as the “time” argument.

Lemma 3.11. Fix ρp = n ≥ 1, and suppose that the level u→ +∞. Then

ERu =
X
nAp

− n− 1

2nAp
+O

( 1

X

)
∼ ρpu

µ
= ρp ·EXp′,µ′,λ′(u); (3.27)

VarRu =
(n+ 1)X
(nAp)2

− 5n2 − 6n+ 1

12(nAp)2
+O

( 1

X

)
∼ ρpu

λµ3−p = ρp ·VarXp′,µ′,λ′(u).

(3.28)



POISSON–ERLANG LÉVY PROCESSES 297

Proof. First, a combination of (3.9), (3.11) and Lemma 3.3 yields that the moment-
generating function Q∗

n(u; v) of the r.v. Ru (with the argument v = −w < Ap) is as
follows:

Q∗
n(u; v) = e−X

n∑
k=1

∞∑
j=0

Xnj+k−1

Γ(nj + k)

(
Ap

Ap − v

)j
. (3.29)

We differentiate (3.29) with respect to v at v = 0 to obtain the mean given by

ERu =
e−X

Ap

n∑
k=1

X k−1
∞∑
j=0

jXnj

Γ(nj + k)
=
e−X

Ap

n∑
k=1

X k−1ΘEn,k(Xn),

where the differential operator Θ := Xn · (d/dX )n and En,k(Xn) is the generalized
Mittag-Leffler function defined in (2.6).

Simple calculations show that

ΘEn,k(Xn) =
1

n

∞∑
j=0

njXnj

Γ(nj + k)
=

1

n

{ ∞∑
j=0

Xnj

Γ(nj + k − 1)

− (k − 1)
∞∑
j=0

Xnj

Γ(nj + k)

}
=

1

n
{En,k−1(Xn)− (k − 1)En,k(Xn)}.

(3.30)

Hence,

ERu =
e−X

nAp

{
n∑
k=1

X k−1En,k−1(Xn)−
n∑
k=1

(k − 1)X k−1En,k(Xn)

}
.

But
n∑
k=1

X k−1En,k−1(Xn) =

∞∑
j=0

Xnj

Γ(nj)
+

∞∑
j=0

Xnj+1

Γ(nj + 1)
+ · · ·+

∞∑
j=0

Xnj+n−1

Γ(nj + n− 1)

=
∞∑
j=0

X j

Γ(j)
= X eX ,

so that

ERu =
X
nAp

− e−X

nAp

n∑
k=1

(k − 1)X k−1En,k(Xn).

From [5, Section 18.1] we have the dominant behavior

En,k(Xn) ∼ 1

n
X 1−keX as X → +∞, (3.31)

whence
n∑
k=1

(k − 1)X k−1En,k(Xn) ∼ eX

n

n∑
k=1

(k − 1) =
1

2
(n− 1)eX .

It then follows that as X → +∞,

ERu ∼ X
nAp

− n− 1

2nAp
, (3.32)

which is linear in X (or u).
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In order to find the variance, we differentiate (3.29) twice with respect to v and deter-
mine the value of the second derivative at v = 0. One ascertains that

E(R2
u) = (ERu)

2 +VarRu =
e−X

A2
p

n∑
k=1

X k−1
∞∑
j=0

j(j + 1)Xnj

Γ(nj + k)

=
e−X

A2
p

n∑
k=1

X k−1Θ(Θ + 1)En,k(Xn) =
ERu

Ap
+
e−X

A2
p

n∑
k=1

X k−1Θ2En,k(Xn).

From (3.30)

Θ2En,k(Xn) =
1

n2
{En,k−2(Xn)− (k − 2)En,k−1(Xn)

− (k − 1)(En,k−1(Xn)− (k − 1)En,k(Xn))} =
1

n2
{En,k−2(Xn)

− (2k − 3)En,k−1(Xn) + (k − 1)2En,k(Xn)}
and

∞∑
j=0

X k−1En,k−2(Xn) =
∞∑
j=0

Xnj

Γ(nj − 1)
+

∞∑
j=0

Xnj+1

Γ(nj)
+ · · ·+

∞∑
j=0

Xnj+n−1

Γ(nj + n− 2)

=

∞∑
j=0

X j

Γ(j − 1)
=

∞∑
j=0

X j+2

j!
= X 2eX .

Hence,

VarRu =
X 2

(nAp)2
+

ERu

Ap
− (ERu)

2

+
e−X

(nAp)2

n∑
k=1

X k−1{(k − 1)2En,k(Xn)− (2k − 3)En,k−1(Xn)}.

From (3.32) we easily obtain the following asymptotic relation as X → +∞:

(ERu)
2 ∼ X 2

(nAp)2
− (n− 1)X

(nAp)2
+

(n− 1)2

(2nAp)2
. (3.33)

A subsequent combination of (3.31) and (3.33) yields that as X → +∞,

VarRu ∼ (2n− 1)X
(nAp)2

− (n− 1)(3n− 1)

(2nAp)2

+
e−X

(nAp)2

n∑
k=1

X k−1{(k − 1)2En,k(Xn)− (2k − 3)En,k−1(Xn)}

∼ (2n− 1)X
(nAp)2

− (n− 1)(3n− 1)

(2nAp)2
+

1

n3A2
p

n∑
k=1

{(k − 1)2 − (2k − 3)X}.

It remains to combine this result with the evaluations
∑n
k=1(k−1)2 = n3/3−n2/2+n/6

and
∑n
k=1(2k − 3) = n(n− 2) to find that

VarRu ∼ (n+ 1)X
(nAp)2

− 5n2 − 6n+ 1

12(nAp)2
as X → +∞.

�
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Theorem 3.12. Fix ρp = n ≥ 1, and real L > 0. Suppose that the level u→ +∞. Then
(i) the family of positive r.v.’s

Iu(L)
d→ Xp′,µ′,λ′(L) ( d= Tw3−p(L/µ, λL2−p)). (3.34)

(ii) The first two moments of the incremental process Iu(L) possess the following asymp-
totics:

EIu(L) → ρp ·EXp′,µ′,λ′(L) = ρpL/µ; (3.35)

VarIu(L) → ρp ·VarXp′,µ′,λ′(L) = ρpLµp−3/λ. (3.36)

Proof. (i) It suffices to establish that for all fixed real v ≥ 0 and L > 0, and as u→ +∞,

logQ∗
n(u+ L; v)− logQ∗

n(u; v) → θpL ·
{(

1− v

Ap

)−1/n − 1
}

(= ζ3−p,L/µ,L2−pλ(v)).
(3.37)

To this end, observe that a = (Ap/(Ap − v))1/n with v < Ap fixed and finite. Then

Q∗
n(u; v) = e−X

n∑
k=1

X k−1
∞∑
j=0

Xnj

Γ(nj + k)

(
Ap

Ap − v

)j

= e−X
n∑
k=1

X k−1
∞∑
j=0

(aX )nj

Γ(nj + k)
= e−X

n∑
k=1

X k−1En,k((aX )n).

Now, from the asymptotic behavior in (3.31) we see that, as X → +∞,

Q∗
n(u; v) ∼

1

n
eaX−X

n∑
k=1

a1−k = e(a−1)X a−n − 1

n(a−1 − 1)
(3.38)

and so, as X → +∞,

log Q∗
n(u; v) = X (a− 1) +O(1) = X

{(
1− v

Ap

)−1/n

− 1

}
+O(1).

Let X̂ := θ(u+ L). Then it follows from (3.38) that

Q∗
n(u+ L; v) ∼ e(a−1)X̂ a−n − 1

n(a−1 − 1)

as u→ +∞. Hence,

log Q∗
n(u+ L; v)− log Q∗

n(u; v) ∼ (a− 1){X̂ −X} = {θ(u+ L)− θu} (a− 1)

= θpL ·
{(

1− v

Ap

)−1/n − 1
}

as u→ +∞.

(ii) The validity of (3.35) and (3.36) easily follows by combining (3.26), the facts
that in view of Remark 3.6 and (3.1), {Ru, u ≥ 0} and {Xp′,µ′,λ′(u), u ≥ 0} are the
processes with independent increments which have additive mean and variance, with the
leftmost representations in (3.27) and (3.28), respectively. �
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Remark 3.13. The formula (3.34) implies that the univariate increments of the FPT pro-
cess “truncated” at zero converge to the corresponding increments of the “reciprocal”
compound Poisson-gamma Lévy process X3−p,1/µ,λ(·) as the starting point (i.e., u) of
all such increments approaches +∞.

It is well known that the mean-square convergence implies convergence in the mean,
and the latter implies weak convergence. There are numerous counter-examples for which
weak convergence holds but convergence in the mean does not take place. Theorem 3.12
provides a new natural counter-example, since (3.34) yields weak convergence, whereas
(3.35)–(3.36) stipulate that neither the limit in mean nor the mean-square limit coincide
with the weak limit. This is due to an additional factor ρp in the middle expressions of
these formulas, which is generally not 1.

An interesting open problem is to determine the limit of the family of the incremen-
tal stochastic processes {Iu(L), L ≥ 0} (which is defined by (3.26)) as u → +∞ in
the sense of J-convergence, i.e., convergence of càdlàg stochastic processes in topology
generated by the Skorohod metric (see [11, Chapter VI] for more detail on such conver-
gence). We conjecture that the corresponding limit should be different from the compound
Poisson-gamma Lévy process {Xp′,µ′,λ′(L), L ≥ 0}.

Theorem 3.14. Suppose that n = 1. Then
(i) For each fixed u ≥ 0, the overshoot γu defined by (3.6) is an exponential r.v. with mean
θ−1
3/2 and hence its probability law is invariant with respect to level u.

(ii) For each fixed u ≥ 0, the r.v.’s τu and γu are independent.

Proof. (i) In the case where u = 0, this assertion coincides with (3.12). For u ∈ R1
+,

we apply the Pecherskii–Rogozin identity (cf., for example, [17, Theorem 2]). In what
follows, we slightly modify the notation developed in [17] when necessary. For simplicity,
the rest of the proof is carried out in the case where µ = λ = 1.

Now, [17, Theorem 1.b] implies that for an arbitrary fixed w ∈ R1
+, the Wiener–Hopf

factor Φ+
w(iz), which corresponds to the Laplace transform of the (exponentially stopped)

Poisson-exponential Lévy process X3/2,1,1(t), is as follows:

Φ+
w(iz) = 1/(w + 2z/(2 + z)). (3.39)

A subsequent combination of (3.39) with [17, Theorem 2] yields that for arbitrary w ∈
R1

+, ψ ∈ R1
+ and z ∈ R1

+ such that ψ 6= z,∫ ∞

0

e−ψu ·Ee−wτu−zγu · du = (1− Φ+
w(iψ)/Φ

+
w(iz))/(ψ − z)

=
1

ψ − z
· 2ψ/(2 + ψ)− 2z/(2 + z)

w + 2ψ/(2 + ψ)
.

(3.40)

Next, we may take the limit as w ↓ 0 in (3.40) to obtain that∫ ∞

0

e−ψu ·Ee−zγudu =
1

ψ − z
·
(
1− z/(2 + z)

ψ/(2 + ψ)

)
=

1

ψ(1 + z/2)
. (3.41)

The rest follows from the fact that the rightmost expression in (3.41) is the double Laplace
transform of the exponential r.v. Tw2(1/2, 1) with mean 1/2.
(ii) For u = 0, this is obvious (see also [22, p. 197, Theorem 18]). For u ∈ R1

+, (3.14)
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yields that the Laplace transform Ee−wτu can be factored as follows:

Ee−wτu = q∗1(u;w) = (2/(2+w)) ·exp{−u ·2w/(2+w)}, where w > −2. (3.42)

Next, we multiply the expression on the right-hand side of (3.42) by the Laplace transform
1/(1 + z/2) of the r.v. γu

d
= Tw2(1/2, 1) (see part (i)). Subsequently, consider the

Laplace transform (in the new variable ψ) of this product. The verification of the fact that
the result of this transformation coincides with the closed-form expression for the double
Laplace transform which emerges on the right-hand side of (3.40) is straightforward and
left to the reader.

The rest follows by employing a characterization of the independence of a pair of
generic positive r.v.’s (U ,Y) in terms of existence of the following factorization of their
joint Laplace transform into a product of the individual Laplace transforms of these r.v.’s:
Ee−vU−wY = Ee−vU ·Ee−wY (cf., for example, [2, Exercise 5.21]). Here, v and w take
values in [0,+∞). �

Remark 3.15. Certain results which are similar in spirit to Theorem 3.14 are well known
(cf., for example, [13, p. 27]). However, we have not found this assertion in the literature
and decided to illustrate herewith [17].
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2. Çinlar, E.: Probability and Stochastics, Springer, New York, 2011.
3. Cox, D. R.: Renewal Theory, Methuen, London, 1962.
4. Elliott, R. J. and Kopp, P. E.: Mathematics of Financial Markets 2nd edn., Springer, New York, 2005.
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