Some properties of the real line

Keng Wiboonton

Theorem 1 Every open set of \(\mathbb{R} \) can be written as a countable union of mutually disjoint open intervals. (Zorn’s lemma is used in the proof.)

In general, for \(n > 1 \), open sets in \(\mathbb{R}^n \) cannot be written as a countable union of mutually disjoint open intervals. (A subset \(I \) of \(\mathbb{R}^n \) is an interval if \(I = I_1 \times \ldots \times I_n \) where \(I_1, \ldots, I_n \) are intervals in \(\mathbb{R} \).)

Exercise. Prove that the open unit disc \(B(0; 1) := \{(x, y) \in \mathbb{R}^2| x^2 + y^2 < 1 \} \) in the plane cannot be as a countable union of mutually disjoint open intervals.

Theorem 2 *(Heine-Borel)* A subset of \(\mathbb{R} \) is compact if and only if it is closed and bounded.

Theorem 3 *(Bolzano-Weierstrass)* Every bounded, infinite set of real numbers has a limit point. (Recall that a point is said to be a limit point of \(A \) if it is the limit of a sequence of distinct terms from \(A \).)

Theorem 4 Every connected subset of \(\mathbb{R} \) is an interval.

Problems

Problem 1. Let \(A \subseteq \mathbb{R} \) be uncountable.
(a) Show that \(A \) has at least one limit point.
(b) Show that \(A \) has uncountably many limit points.

Problem 2. Let \(E \subseteq \mathbb{Q} \) be the set of \(x \) whose decimal expansion is of the form \(x = 0.d_1d_2\ldots d_N \) for some \(N \in \mathbb{N}, \) and where \(d_1, \ldots, d_N \in \{1, 2, 3, 4, 5, 6, 7, 8\} \) (so \(d_j \neq 0 \) and \(d_j \neq 9 \) for \(j = 1, \ldots, N \)). Show that any compact subset of \(E \) is finite.
Can we drop the hypothesis that \(d_j \neq 0 \) and \(d_j \neq 9 \)?

Problem 3. Prove that there exists no continuous bijection from \((0, 1)\) to \([0, 1]\).