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Introduction

In heterogeneous media the initiation of failure is a multi-scale
phenomena.

If you apply a load at the structural scale, the load is often
amplified by the microstructure creating local zones of high field
concentration.

We will work with gradient fields associated with intensive
quantities given by electric potential inside heterogeneous media.
Field concentrations are measured using the L norm of the
gradient field.
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Notation

» Q is a bounded open subset of R".
» Y =(0,1)" is the unit cube in R".
» Let p > 2 and let g such that

1 1
_|._

» Let Lh(D) = {u: D— R": / lu(x)|P dx < oo}. This
D

space is a Banach space and its norm is defined by

1/p
ol 2o = ( / |u(x)|f’dx) |
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Notation

> Let WpP(Y) be the set of all functions u € WHP(Y) with
mean value zero which have the same trace on the opposite

faces of Y.
» We consider N-phase materials. The characteristic function
N
for the i-th material x;(y) is Y-periodic and Zx,-(y) =1
i=1

> Let A:R” >< R" — R" be defined by

Aly,A) = Zx, ()ai |A[P72 A, with a; > 0.
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Structure Conditions on A

v

For every A € R", A(-,\) is Y-periodic and Lebesgue
measurable.

|A(y,0)| < G for a.e y € R™.
Continuity: For a.e y € R”,

v

v

IA(y, M) — Ay, \2)| < Co A — M| (JAa] + [Ao] +1)P7H°

v

Monotoniciy: For a.e y € R”,

(Aly, A1) — Ay, X2), AL — A2) > Go A — Aol (M) + [Aa] +1)P77

A A P
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Properties of A

» For every A € R", A(-,\) is Y-periodic and Lebesgue
measurable.
» Have |A(y,0)| =0 for all y € R".
» Continuity
Ay, A1) = Ay, A2)l < G = Dol (|Aa] + [Mo] +1)P72
» Monotoniciy

(Aly; M) — Ay, A2), A1 — A2) > Go|A — AofP
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Continuity

N
> xily)ai [\/\1|’°_2 M= PofP? Az]
i=1

M ‘|)\1|”_2 A — [MalP2 )\2‘ .

|A(y7 )‘1) - A(y7 )‘2)’ =

IN

We work with
2
AP A — AP )\2‘
= PP 4 PP 2 A P72 XolP 2 g - o

Substract and add 2 |A;[P7! [A2|P 7! to get

A A P
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Continuity

2
‘|>\1|p—2 A1 — |)\2|p—2 )\2’

2
(a7 = ™) (1007 Dl =) 2(Ixal [Aa] = Ax - o)

IA

e = P (a2 Dl 2) g = ol

2
(p— 12 (NP +122P7) I = Ao (%)

IA

2
+ (WP 4+ el ) A = el

2
< K2 Al el s = el
Then we have

Ay, A1) = Ay, X2)| < Cu A — Aol (|Aa] + |2l +1)P 2.
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(*)Convexity

Consider f(x) = xP~1, with p > 2, defined on R .
Have f is a convex function and therefore satisfies:

{f’(w) (Xe] = IMl) < F(Ral) = F (M),
F (1al) (Al = al) < F (A2l = F (122l

(p—1) NP2 (IMa] = Phal) < APt = 2Pt

{(p— D) Al (Dl = Aal) < PP = Pt
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(*)Convexity

Then

Al = [P
(p— 1) M2 (A1) = [Aa]).-

(p—1) A2l”™2 (IAa] = |A2l)

IN N

Therefore we have

Al = P

IN

(p—1) (IMalP72 + 122P7) 112l = ol

< (P (NP2 1P A - ol

A
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Preliminary Results: Homogenization Theorem

Setex =1 >0, k=1,2,...

A%(x,\) = A (eix)
k

X (%) = xi (%) :

for every x € R" and every A € R".
Consider the Dirichlet problem

—div (A% (x,Vu*)) = f on Q,
u € WP(Q);

f e W 19(Q).
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Preliminary Results: Homogenization Theorem
Have v, — u' in WhP(Q) as e, — 0, where u"

—div (b (VUH)) =1 on Q,
ut e Wé’p(Q);

is solution of

()

where the monotone map b : R” — R"(independent of f and Q) is
defined for all £ € R" by

b() = [ A€+ Vo). ()
where v is the solution to the cell problem:

{fy (A(y, &+ V), Vw) dy = 0 for every w € WELE(Y), ()

v e WLE(Y).
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Preliminary Results: Corrector Theory

> Yeik =ex(i+Y), where j € Z",
>, ={ieZ": Y] cq}.
> Q= UY! foriel,.

> Let ¢ € LE(Q) and M., ¢ : R” — R" be a funtion defined by

M) = 3 () |, e )

Ielek

Silvia Jiménez Bolafios: Lower bounds on Field Concentrations, 14



Preliminary Results: Corrector Theory

IMe, (0) — SOHLg(Q) — 0.

M, (p) — ¢ a.e. on Q.

By Jensen’s inequality: [|Me, (¢)llLoq) < ll¢lls() -
P :R" x R" — R" defined by

vV v v Yy

P(x, &) = &+ Vu(x)

where v is the unique solution of (4).
P(-, &) is Y-periodic and P, (x,&) = P(é,g) is €x-periodic in
X

P(-,§) = € in LE().

v

v

A A P
Silvia Jiménez Bolafos: Lower bounds on Field Concentrations, 15



Preliminary Results: Corrector Theory

Taking ¢ = Vu' in (5), we get:

1
M (Tu)0) = 3 vy () [ V).
(00 = 20 O,

i€le,

Therefore by the Corrector Theorem ( Theorem 2.1 of [1]), we have

P (2 ma(wey0) - v

-0, (6)
)
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Preliminary Results: Young Measures

» A function 9(x,\) : 2 x R™ — R that is measurable in x and
continuous in A is called a Caratheodory function.

> A Young measure v is a family {vy},q of probability
measures associated with a sequence {zj}j’il
fi 1 Q@ C R" — R" such that the support of v, C R" and
they depend measurably on x € Q, i.e, for all ¢ : R" — R,
the function

500 = [ eNdus(d) = {0

is measurable.
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Preliminary Results: Young Measures
(THEOREM 6.2 from Pedregal’s book)
Let Q c RY be a measurable set and let zj: Q2 — R™ be
measurable functions such that

sup/ g(|z])dx < oo,
Jj JQ
where g : [0, 00) — [0, o] is continuous, non-decreasing function
such that tlim g(t) = co. There exists a subsequence, not

— 00
relabeled, and a family of probability measures, v = {vx},cq such
that whenever {1(x, zj(x))} is weakly convergent in L!(Q), for all
Caratheodory function ¥(x,A) : 2 x R™ — R* = RU {+0}, the
weak limit is the function

QZ)(X) = w(xv)‘)dvx()‘)'

R™
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Preliminary Results: Young Measures

By taking g(t) = tP for p > 1 we get that every bounded sequence
in LP(Q2) contains a subsequence that generates a parametrized
measure in the sense of the previous theorem.

In order to identify the parametrized measure associated to a
particular sequence of functions z; (obtained perhaps in some
constructive way or using some scheme), it is enough to check

j[rgo/w)cpzj dx-/§ /m (A)dux(A)dx

for & and ¢ belonging to dense, countable subsets of Ll(Q) and
Co(R™), respectively.
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Preliminary Results: Young Measures

(LEMMA 6.3 from Pedregal’s book)
Let {z;} and {w;} bounded sequences in LP(Q).
> If |{z; # w;}| — 0, the parametrized measure for both
sequences is the same.
> If [wj — Zjllpq) — 0. then {2} and {w;} share the same
parametrized measure.

A A P
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Preliminary Results: Young Measures

(THEOREM 6.11 from Pedregal’s book)

If {z;} is a sequence of measurable functions with associated
parametrized measure v = {Ux},cq, then for all Caratheodory
function ¢ > 0 and E C £ measurable we have

J—00

/ P(x, N)dvg(A)dx < I|m|nf/ P(x, zj(x))dx
EJR"
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Before Main Result
By (6) and previous lemma:
{P(ZMuwu00) | and (76 (0o
k k>0

have the same Young Measure, i.e. we have v = {vy}, . such that

/ () / o\ din(N)d
Q R
—  im /Qg(x)qs (P (E,Mek(VuH)(x)»dx

k—o00

= lim /Q C(x)6 (Vu (x)) dx,

k—o00

for all ¢ € Co(R™) and for all ¢ € C5°(R").
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Main Result

Using the notation above, we have:
lim / C(x)é (P (i, M., (vu”) (x))) dx
/ ) [ oPly. Ve (x))) .

Therefore

[c0 [ odnax = [ ) [ oy vt o)y

for all ¢ € Co(R™) and for all ¢ € C§°(R").
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Main Result

Have for all Caratheodory function ¥ > 0 and D C Q measurable
L veendoae = [ [ u (Pl Va()) e
D JR"
I|m|nf/ P(x, Vu(x))dx

IA

In particular

// ‘P(y,VuH(x))‘pdydxgIiminf/ IV 5 (x)|P dx.
DJy k—oo Jp
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