A Survey of Hybrid Control Systems

October 30, 2007

Rick Barnard

Student Seminar on Control Theory and Optimization Fall 2007

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト ・ ヨ

- 1 Continuous Optimal Control
- 2 Multiprocesses
- 3 SGP Systems
- 4 Stratified Domains
- 5 Teel Hybrid Systems

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

References

- Clarke, F.H.; Vinter, R.B., Applications of Optimal Multiprocesses, SIAM J. Control and Optimization 27 no. 5 (1989) 1048-1071.
- Bressan, A.; Hong, Y. Optimal Control Problems on Stratified Domains, Networks and Heterogeneous Media
 2 no. 2 (2007) 313-331.
- Goebel, R.; Teel, A. R., Solutions to hybrid inclusions via set and graphical convergence with stability theory applications, Automatica J. IFAC 42 no. 4, (2006) 573-587.
- Garavello, M; Piccoli, B, Hybrid necessary principle, SIAM J. Control Optim. 43 no. 5, (2005) 1867-1887.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

Motivation

What do we mean by a "hybrid system?"

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

<□> <部> <=> <=> <=> <=> <=>

Motivation

What do we mean by a "hybrid system?"

 We consider systems where the state can change continuously or discretely and the dynamics themselves can change discretely. A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

Motivation

What do we mean by a "hybrid system?"

- We consider systems where the state can change continuously or discretely and the dynamics themselves can change discretely.
- This is a very general "definition" of hybrid systems, so naturally there are several frameworks to consider. We will look at several hybrid control systems.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

Standard Control System

A standard control system is of the form

$$\dot{x} = f(t, x(t), u(t)), \ x(0) = x_0,$$

where the function $u(t) \in U$ is a control function.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

Differential Inclusions

• Let F map $\mathbb{R} \times \mathbb{R}^n$ to the subsets of \mathbb{R}^n . Then a differential inclusion is of the form

 $\dot{x}(t) \in F(t, x(t))$ a.e., $t \in [a, b]$

- If we let F(t, x(t)) = f(t, x(t), U), then differential inclusions can subsume the control system formulation
- Thus, differential inclusions cover a wider array of problems.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

Continuous Optimal Control

We want to solve \mathcal{P}_c :

$$\min_{u(t)\in U}\ell(x(T))+\int_0^T L(t,x(t),u(t))dt$$

over all x(t) that satisy

$$\dot{x} = f(t, x(t), u(t)), \ x(0) = x_0, \ x(T) \in C_1$$

This is called the Bolza problem. Note we can replace the dynamics with a differential inclusion, which will sometimes be utilized in the following examples. This will lead us to rewrite L so that it depends instead on (t, x, \dot{x}) .

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

Pseudo-Hamiltonian

We define the *pseudo-Hamiltonian*, a map $H_p: [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ given by

$$H_p(t,x,p,u,\lambda) := \langle p, f(t,x,u) \rangle - \lambda L(t,x,u).$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト ・ ヨ

Pontryagin Maximum Principle

Let (x, u) solve the optimal control problem. Then there is a $\lambda \in \{0, 1\}$, and arc p such that

The adjoint equation below holds a.e.

 $-\dot{p}(t) \in \partial_{x}H_{p}(t,x(t),p(t),u(t),\lambda)$

The psuedo Hamiltonian is maximized at u(t) a.e.; i.e.

 $max\{H_p(t, x(t), w(t), \lambda) : w(t) \in U(t)\} = H_p(t, x(t), p(t), u(t), \lambda)$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

・ロト ・得ト ・ヨト ・ヨト

Pontryagin Maximum Principle

Let (x, u) solve the optimal control problem. Then there is a $\lambda \in \{0, 1\}$, and arc p such that

- $\blacksquare \|p\| + \lambda > 0.$
- There is a ζ ∈ ∂_Cℓ(x(b)) so that the following transversality condition holds:

$$-p(b) - \lambda \zeta \in N_{C_1}^C(x(b)).$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hamilton-Jacobi Equations

Using a differential inclusion notation for our system, we define the *Hamiltonian* in the standard way

$$H(x,p) = \sup_{v \in F(t,x)} \{ \langle p, v \rangle - L(t,x,v) \}$$

and define the value function as

$$V(t,x) = \inf(\int_t^T L(s,x(s,u(s))ds + \ell(x(T))).$$

Then we can show that

$$V_t = H(x, \nabla_x V).$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

Multiprocesses

Our first hybrid control problems are called multiprocesses. A multiprocess is a *k*-tuple comprised of $\{\tau_0^i, \tau_1^i, y_i(\cdot), w_i(\cdot)\}$ where the first two entries are the endpoints of a closed interval, and

$$egin{aligned} & y_i(\cdot): [au_0^i, au_1^j] o \mathbb{R}^{n_i}, \ & w_i(\cdot): [au_0^i, au_1^j] o \mathbb{R}^{m_i} \end{aligned}$$

are absolutely continuous and measurable, respectively. We require

 $\dot{y}_i = f_i(t, y_i(t), w_i(t))$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimal Multiprocesses

Essentially, multiprocesses are ordered set of control systems where we are allowed to choose when we switch between the different systems. We use the cost function

$$\ell(\{\tau_0^i,\tau_1^i,y_i(\tau_0^i),y_i(\tau_1^i)\}) + \sum_i \int_{\tau_0^i}^{\tau_1^i} L_i(t,y_i(t),w_i(t))dt$$

We will require, however, that we be given a set Λ such that

 $\{\tau_0^i, \tau_1^i, y_i(\tau_0^i), y_i(\tau_1^i)\} \subset \Lambda$

Our problem is then to find a multiprocess that minimizes the cost function with the above endpoint constraing satisfied. A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ ロ ト ・ 同 ト ・ 三 ト ・ 二 ト

An Example of a Multiprocess

Consider the situation of harvesting a renewable resource. The standard dynamics are given by

$$\dot{x}(t) = F(x(t)) - \sigma x(t)u(t)$$

We restrict u to the interval [0, E]. Then a standard profit function which we wish to maximize, including the discount constant δ is

$$\int_0^T e^{-\delta t} [\pi x(t) - c] u(t) dt.$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・(型ト ・ヨト ・ヨト)

An Example of a Multiprocess

We turn to the situation where there are two species x_1 , and x_2 which we wish to switch between once in order to optimize profits. We introduce the following cost function

$$\phi_0 e^{-\delta \tau} - \int_0^\tau e^{-\delta t} [\pi_1 x_1(t) - c_1] u(t) dt - \int_\tau^\tau e^{-\delta t} [\pi_2 x_2(t) - c_2] u(t) dt$$

with switching time τ and initial condition will be $x_2(\tau) = z(\tau)$ where

$$\dot{z}(t) = F_2(z(t)), \ z(0) = x_0^2.$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

Multiprocess Maximum Principle

Suppose $\{T_0^i, T_1^i, x_i(\cdot), u_i(\cdot)\}$ is a minimizing multiprocess. Then, under basic assumptions, like those for the PMP, there are are real numbers $\lambda \ge 0, h_0^i, h_1^i$, and absolutely continuous functions $p_i(\cdot) : [T_0^i, T_1^i] \to \mathbb{R}^{n_i}$ such that $\lambda + \sum_i |p_i(T_1^i)| = 1$ and the following hold true

$$-\dot{p}_i(t) \in \partial_C _{\times} H_i(t, x(t), u_i(t), p_i(t), \lambda), \text{ a.e.}$$

 $t \in [T_0^i, T_1^i],$

■
$$H_i(t, x(t), u_i(t), p_i(t), \lambda) = \max_{w \in U_t^i} H_i(t, x(t), w, p_i(t), \lambda)$$
a.e. $t \in [T_0^i, T_1^i]$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

Multiprocess Maximum Principle

Suppose $\{T_0^i, T_1^i, x_i(\cdot), u_i(\cdot)\}$ is a minimizing multiprocess. Then, under basic assumptions, like those for the PMP, there are are real numbers $\lambda \ge 0, h_0^i, h_1^i$, and absolutely continuous functions $p_i(\cdot) : [T_0^i, T_1^i] \to \mathbb{R}^{n_i}$ such that $\lambda + \sum_i |p_i(T_1^i)| = 1$ and the following hold true

■
$$h_0^i \in \text{co} \operatorname{ess}_{t \to T_0^i}[\sup_{w \in U_t^i} H_i(t, x(T_0^i), w, p_i(T_0^i), \lambda)],$$

■ $h_1^i \in \text{co} \operatorname{ess}_{t \to T_1^i}[\sup_{w \in U_t^i} H_i(t, x(T_1^i), w, p_i(T_1^i), \lambda)],$
■ $\{-h_0^i, h_1^i, p(T_0^i), -p(T_1^i)\} \in N_{\Lambda}^{\mathcal{C}} + \lambda \partial^{\mathcal{C}} f.$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our Example Revisited

The tranversality conditions state that

$$h_0^2 = h_1^1 + p_2(\tau) \dot{z}(\tau) + \delta \phi_0 e^{-\delta t}$$

Then, using knowledge from the PMP for the one system case, we know that u will be maximal on both sides of τ so

$$h_0^2 = p_2(\tau)[F_2(z(\tau)) - \sigma_2 z(\tau)E] + e^{-\delta \tau}[\pi_2 z(\tau) - c_2]E$$

and

$$h_1^1 = e^{-\delta \tau} [\pi_1 x_1(\tau) - c_1] E.$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

Our Example Revisited

We then get the following implicit statement on the switching time using only necessary conditions

$$[\pi_2 x_2(\tau) - c_2] E = [\pi_1 x_1(\tau) - c_1] E + \delta \phi_0 + e^{\delta \tau} p_2(\tau) \sigma_2 x_2(\tau) E.$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SGP Systems

We now turn to a new hybrid system which can be seen as generalizing, in some ways, autonomous multiprocesses by removing the ordering of the switches. We are given the following data

- A finite set Q,
- A family of smooth manifolds $M = \{M_q\}_{q \in Q}$ and sets $U' = \{U'_q\}_{q \in Q}$,
- Functions $f_q: M_q \times U_q \to TM_q$ with $f_q(x, u) \in T_x M_q$ for each $(x, u) \in MQ \times U'_q$,

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SGP Systems

- $U = \{U_q\}_{q \in Q}$, a family of sets of maps from \mathbb{R} into U'_q ,
- A family of intervals $J = \{J_q\}_{q \in Q}$ where $J_q \subset \mathbb{R}^+$.
- A subset S of

$$\{(q, x, q', x', u(\cdot), \tau) : q, q' \in Q, \\ x \in M_q, x' \in M_{q'}, u(\cdot) \in \mathcal{U}_{q'}, \tau \in J_{q'}\}.$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト ・ ヨ

SGP Systems

We define a solution as a triple $X(t) = (q(t), x(t), \tau(t))$ where there is a $\{t_i\}$ partition of [0, T] such that

If $x_i(\cdot) = x|_{(t_i, t_{i+1})}$, then $\dot{x}_i(t) = f_{q_i}(x(t), u(t))$ $(x_i(t_i), x_{i+1}(t_i)) \in S_{q_i, q_{i+1}}$ where

$$\begin{array}{lll} \mathcal{S}_{q_i,q_{i+1}} & := & \{(x,x') \in \mathcal{M}_{q_i} \times \mathcal{M}_{q_{i+1}} : & \\ & & (q,x,q',x',u(\cdot),\tau) \in \mathcal{S} & \\ & & \text{for some } u(\cdot) \in U_{q_{i+1}}, \tau \in J_{q_{i+1}} \end{array}$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト ・ ヨ

SGP Systems

Also, we need

$$\begin{array}{ll} u_{i+1} \in U_{q_i, x_i(t_i), q_{i+1}, x_{i+1}(t_i)} \text{ where} \\ \\ U_{q_i, x_i(t_i), q_{i+1}, x_{i+1}(t_i)} & \coloneqq & \{u(\cdot) \in U_{q_{i+1}} : \\ & (q_i, x_i, q_{i+1}, x_{i+1}, u(\cdot), \tau) \in S \\ & \text{ for some } \tau \in J_{q_{i+1}} \} \end{array}$$

A Survey of Hybrid Control Systems

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

SGP Cost Functions

The cost function associated with this problem is of the following form

$$C(X) = \sum_{j=1}^{\nu} \int_{t_{j-1}}^{t_j} L_{q_j}(x_j(t), u_j(t)) dt$$

+
$$\sum_{j=1}^{\nu-1} \Phi_{q_j, q_j+1}(x_j(t_j), x_{j+1}(t_j))$$

+
$$+ \phi_{q_1, q_{\nu}}(x_1(t_0), x_{\nu}(t_{\nu})).$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト ・ ヨ

Hybrid Maximum Principle

Let X be a solution to the above hybrid problem. Then there is an adjoint pair (p, λ) with $p = \{p_1, p_2, \dots, p_\nu\}, \lambda \in \mathbb{R}^+$ such that $\bullet -\dot{p}(t) = \partial_x H_i(t, x(t), p(t), u(t), \lambda)$

$$-\dot{p}(t) = \partial_x H_i(t, x(t), p(t), u(t), \lambda)$$

The Hamiltonian is maximized for this adjoint pair

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

・ロト ・得ト ・ヨト ・ヨト

Hybrid Maximum Principle

Let X be a solution to the above hybrid problem. Then there is an adjoint pair (p, λ) with $p = \{p_1, p_2, \dots, p_{\nu}\}, \ \lambda \in \mathbb{R}^+$ such that

The switching condition below holds

$$egin{aligned} & (-
ho_i(t_i),
ho_{i+1}(t_i)) - \lambda
abla \Phi_{q_i,q_{i+1}}(x_i(t_i), x_{i+1}(t_i)) \ & \in T^C_{S_{q_i,q_{i+1}}} \end{aligned}$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

Hybrid Maximum Principle

Let X be a solution to the above hybrid problem. Then there is an adjoint pair (p, λ) with $p = \{p_1, p_2, \dots, p_{\mu}\}, \lambda \in \mathbb{R}^+$ such that Also

• if
$$t_i - t_{i-1} \in Int(J_{a_i})$$
, then $\sup H_i = \sup H_{\nu} = 0$

- if $t_i t_{i-1}$ is the left endpoint of a nontrivial J_{q_i} , then sup $H_i \leq 0$
- if $t_i t_{i-1}$ is the right endpoint of a nontrivial J_{q_i} , then sup $H_i \ge 0$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

・ロト ・同ト ・ヨト ・ヨト - ヨ

Stratifications of \mathbb{R}^n

Assume that we have a finite set of disjoint embedded submanifolds $M_j \subset \mathbb{R}^n$ whose union is \mathbb{R}^n . Furthermore if $M_i \cap \overline{M_k} \neq \emptyset$, then $M_i \subset \overline{M_k}$. A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Infinite horizon problem

Suppose our cost function is of the form

$$\int_0^{\inf} e^{-\beta t} L(x(t), u(t)) dt$$

with dynamics

$$\dot{x}(t) = f(x(t), u(t) \ x(0) = x_0.$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

<ロ> <部> <部> <き> <き> <き> <き</p>

Assumptions

We assume that on each submanifold M_i our controls are a compact set U_i , we have a continuous $f_i : M_i \times U_i \to \mathbb{R}^n$ and a cost L_i so that f_i is Lipschitz in the state variable, L_i is nonnegative and continuous. Finally, $f(x, u) = f_i(x, a)$ and L(x, u) = L - i(x, u) when $x \in M_i$.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

・ロト ・(型ト ・ヨト ・ヨト -

Hamilton-Jacobi Equation

If we define a multifunction in an analagous manner, and take its convex, semicontinuous regularization, it can be shown that the value function solves the Hamilton-Jacobi equation. A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

Hybrid Time Domains

An alternative model of hybrid dynamics uses differential inclusions. First, we define a *compact hybrid time domain* as

$$\bigcup_{j=0}^{J-1} ([t_j, t_{j+1}] \times \{j\}.$$

And a hybrid time domain E is such that for any T, J then $E \cap [0, T] \times \{0, 1, ..., J\}$ is a compact hybrid time domain.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dynamics of Teel System

We give our hybrid dynamics as

$$\dot{x} \in F(x)$$
 when $x \in C$
 $x^+ \in G(x)$ when $x \in D$

We refer to F and C as the flow map and flow set. Similarly, G and D are the jump map and jump set.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト

Hybrid Arcs

A *hybrid arc* is a hybrid time domain and a function x such that

$$\dot{x}((t,j) \in F(x(t,j)) \text{ if } x(t,j) \in C$$

on the interval (t_j, t_{j+1}) and

 $x(t,j+1)\in G(x(t,j))$

if $x(t,j) \in D$ and $(t,j), (t,j+1) \in \text{dom } x$.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト ・ ヨ

Example: The Bouncing Ball

A bouncing ball can be modeled easily with this framework. If x is the height of the ball above the floor, let

$$y = \left[\begin{array}{c} x \\ \dot{x} \end{array} \right],$$

$$f(y) = \begin{bmatrix} y_2 \\ -g \end{bmatrix}$$

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

and

$$C = \{y_1 > 0 \text{ or } y_1 = 0 \text{ and } y_2 > 0\}.$$

A Survey of Hybrid Control Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: The Bouncing Ball

Then we model the jump condition by setting

$$D = \{y_1 = 0 \text{ and } y_2 \leq 0\}$$

and $G(y) \begin{bmatrix} 0\\ -\mu y_2 \end{bmatrix}$. where $\mu \in (0, 1)$ is a dissipation factor.

A Survey of Hybrid Control Systems

Continuous Optimal Control

Multiprocesses

SGP Systems

Stratified Domains

Teel Hybrid Systems

A Survey of Hybrid Control Systems

・ロト ・同ト ・ヨト ・ヨト ・ ヨ