A Survey of Hybrid Control Systems

October 30, 2007

Rick Barnard

Student Seminar on Control Theory and Optimization Fall 2007
1. Continuous Optimal Control
2. Multiprocesses
3. SGP Systems
4. Stratified Domains
5. Teel Hybrid Systems
References

Motivation

What do we mean by a "hybrid system?"
Motivation

What do we mean by a "hybrid system?"

- We consider systems where the state can change continuously or discretely and the dynamics themselves can change discretely.
Motivation

What do we mean by a "hybrid system?"

- We consider systems where the state can change continuously or discretely and the dynamics themselves can change discretely.
- This is a very general "definition" of hybrid systems, so naturally there are several frameworks to consider. We will look at several hybrid control systems.
A *standard control system* is of the form

\[\dot{x} = f(t, x(t), u(t)), \quad x(0) = x_0, \]

where the function \(u(t) \in U \) is a control function.
Differential Inclusions

- Let F map $\mathbb{R} \times \mathbb{R}^n$ to the subsets of \mathbb{R}^n. Then a differential inclusion is of the form

 $$\dot{x}(t) \in F(t, x(t)) \text{a.e., } t \in [a, b]$$

- If we let $F(t, x(t)) = f(t, x(t), U)$, then differential inclusions can subsume the control system formulation.

- Thus, differential inclusions cover a wider array of problems.
Continuous Optimal Control

We want to solve \mathcal{P}_c:

$$\min_{u(t) \in U} \ell(x(T)) + \int_0^T L(t, x(t), u(t)) \, dt$$

over all $x(t)$ that satisfy

$$\dot{x} = f(t, x(t), u(t)), \quad x(0) = x_0, \quad x(T) \in C_1$$

This is called the Bolza problem. Note we can replace the dynamics with a differential inclusion, which will sometimes be utilized in the following examples. This will lead us to rewrite L so that it depends instead on (t, x, \dot{x}).
We define the \textit{pseudo-Hamiltonian}, a map $H_p : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ given by

$$H_p(t, x, p, u, \lambda) := \langle p, f(t, x, u) \rangle - \lambda L(t, x, u).$$
Pontryagin Maximum Principle

Let \((x, u)\) solve the optimal control problem. Then there is a \(\lambda \in \{0, 1\}\), and arc \(p\) such that

- The adjoint equation below holds a.e.

\[-\dot{p}(t) \in \partial_x H_p(t, x(t), p(t), u(t), \lambda)\]

- The psuedo Hamiltonian is maximized at \(u(t)\) a.e.; i.e.

\[
\max\{H_p(t, x(t), w(t), \lambda) : w(t) \in U(t)\} = H_p(t, x(t), p(t), u(t), \lambda)
\]
Pontryagin Maximum Principle

Let \((x, u)\) solve the optimal control problem. Then there is a \(\lambda \in \{0, 1\}\), and arc \(p\) such that

- \(\|p\| + \lambda > 0\).
- There is a \(\zeta \in \partial C\ell(x(b))\) so that the following transversality condition holds:

\[
-p(b) - \lambda \zeta \in N_{C_1}^C(x(b)).
\]
Using a differential inclusion notation for our system, we define the *Hamiltonian* in the standard way

\[
H(x, p) = \sup_{v \in F(t, x)} \{ \langle p, v \rangle - L(t, x, v) \}
\]

and define the *value function* as

\[
V(t, x) = \inf(\int_t^T L(s, x(s, u(s)) ds + \ell(x(T))).
\]

Then we can show that

\[
V_t = H(x, \nabla_x V).
\]
Multiprocesses

Our first hybrid control problems are called multiprocesses. A multiprocess is a k-tuple comprised of \{\(\tau_0^i, \tau_1^i, y_i(\cdot), w_i(\cdot)\}\) where the first two entries are the endpoints of a closed interval, and

\[
\begin{align*}
 y_i(\cdot) & : [\tau_0^i, \tau_1^i] \rightarrow \mathbb{R}^{n_i}, \\
 w_i(\cdot) & : [\tau_0^i, \tau_1^i] \rightarrow \mathbb{R}^{m_i}
\end{align*}
\]

are absolutely continuous and measurable, respectively. We require

\[
\dot{y}_i = f_i(t, y_i(t), w_i(t))
\]
Optimal Multiprocesses

Essentially, multiprocesses are ordered set of control systems where we are allowed to choose when we switch between the different systems. We use the cost function

$$\ell(\{\tau^i_0, \tau^i_1, y_i(\tau^i_0), y_i(\tau^i_1)\}) + \sum_i \int_{\tau^i_0}^{\tau^i_1} L_i(t, y_i(t), w_i(t)) dt$$

We will require, however, that we be given a set Λ such that

$$\{\tau^i_0, \tau^i_1, y_i(\tau^i_0), y_i(\tau^i_1)\} \subset \Lambda$$

Our problem is then to find a multiprocess that minimizes the cost function with the above endpoint constraining satisfied.
An Example of a Multiprocess

Consider the situation of harvesting a renewable resource. The standard dynamics are given by

$$\dot{x}(t) = F(x(t)) - \sigma x(t)u(t).$$

We restrict u to the interval $[0, E]$. Then a standard profit function which we wish to maximize, including the discount constant δ is

$$\int_0^T e^{-\delta t} [\pi x(t) - c] u(t) dt.$$
An Example of a Multiprocess

We turn to the situation where there are two species x_1, and x_2 which we wish to switch between once in order to optimize profits. We introduce the following cost function

$$\phi_0 e^{-\delta \tau} - \int_0^{\tau} e^{-\delta t} (\pi_1 x_1(t) - c_1) u(t) dt - \int_{\tau}^{T} e^{-\delta t} (\pi_2 x_2(t) - c_2) u(t) dt$$

with switching time τ and initial condition will be $x_2(\tau) = z(\tau)$ where

$$\dot{z}(t) = F_2(z(t)), \quad z(0) = x_0^2.$$
A Survey of Hybrid Control Systems

Continuous Optimal Control
Multiprocesses
SGP Systems
Stratified Domains
Teel Hybrid Systems

Multiprocess Maximum Principle

Suppose \(\{ T_0^i, T_1^i, x_i(\cdot), u_i(\cdot) \} \) is a minimizing multiprocess. Then, under basic assumptions, like those for the PMP, there are real numbers \(\lambda \geq 0, h_0^i, h_1^i \), and absolutely continuous functions \(p_i(\cdot) : [T_0^i, T_1^i] \to \mathbb{R}^{ni} \) such that

\[
\lambda + \sum_i |p_i(T_1^i)| = 1
\]

and the following hold true

- \(-\dot{p}_i(t) \in \partial C x H_i(t, x(t), u_i(t), p_i(t), \lambda), \text{ a.e. } t \in [T_0^i, T_1^i] \),

- \(H_i(t, x(t), u_i(t), p_i(t), \lambda) = \max_{w \in U_i} H_i(t, x(t), w, p_i(t), \lambda) \text{ a.e. } t \in [T_0^i, T_1^i] \),
Multiprocess Maximum Principle

Suppose \(\{T_0^i, T_1^i, x_i(\cdot), u_i(\cdot)\} \) is a minimizing multiprocess. Then, under basic assumptions, like those for the PMP, there are real numbers \(\lambda \geq 0, h_0^i, h_1^i \), and absolutely continuous functions \(p_i(\cdot) : [T_0^i, T_1^i] \to \mathbb{R}^{n_i} \) such that

\[\lambda + \sum_i |p_i(T_1^i)| = 1 \]

and the following hold true:

- \(h_0^i \in \text{co ess}_{t \to T_0^i} \left[\sup_{w \in U_i} H_i(t, x(T_0^i), w, p_i(T_0^i), \lambda) \right], \)
- \(h_1^i \in \text{co ess}_{t \to T_1^i} \left[\sup_{w \in U_i} H_i(t, x(T_1^i), w, p_i(T_1^i), \lambda) \right], \)
- \(\{-h_0^i, h_1^i, p(T_0^i), -p(T_1^i)\} \in \mathcal{N}_\Lambda^{C} + \lambda \partial^{C} f. \)
Our Example Revisited

The tranversality conditions state that

\[h_0^2 = h_1^1 + p_2(\tau)\dot{z}(\tau) + \delta \phi_0 e^{-\delta t} \]

Then, using knowledge from the PMP for the one system case, we know that \(u \) will be maximal on both sides of \(\tau \) so

\[h_0^2 = p_2(\tau)[F_2(z(\tau)) - \sigma_2 z(\tau)E] + e^{-\delta \tau} [\pi_2 z(\tau) - c_2]E \]

and

\[h_1^1 = e^{-\delta \tau} [\pi_1 x_1(\tau) - c_1]E. \]
Our Example Revisited

We then get the following implicit statement on the switching time using only necessary conditions

\[[\pi_2 x_2(\tau) - c_2]E = [\pi_1 x_1(\tau) - c_1]E + \delta \phi_0 \]
\[+ e^{\delta \tau} p_2(\tau) \sigma_2 x_2(\tau) E. \]
SGP Systems

We now turn to a new hybrid system which can be seen as generalizing, in some ways, autonomous multiprocesses by removing the ordering of the switches. We are given the following data

- A finite set Q,
- A family of smooth manifolds $M = \{M_q\}_{q \in Q}$ and sets $U' = \{U'_q\}_{q \in Q}$,
- Functions $f_q : M_q \times U_q \to TM_q$ with $f_q(x, u) \in T_x M_q$ for each $(x, u) \in MQ \times U'_q$,.
SGP Systems

- $U = \{U_q\}_{q \in Q}$, a family of sets of maps from \mathbb{R} into U'_q.
- A family of intervals $J = \{J_q\}_{q \in Q}$ where $J_q \subset \mathbb{R}^+$.
- A subset S of

$$\{(q, x, q', x', u(\cdot), \tau) : q, q' \in Q, x \in M_q, x' \in M_{q'}, u(\cdot) \in U_{q'}, \tau \in J_{q'}\}.$$
We define a solution as a triple \(X(t) = (q(t), x(t), \tau(t)) \) where there is a \(\{t_i\} \) partition of \([0, T]\) such that

- If \(x_i(\cdot) = x|_{(t_i, t_{i+1})} \), then \(\dot{x}_i(t) = f_{q_i}(x(t), u(t)) \)
- \((x_i(t_i), x_{i+1}(t_i)) \in S_{q_i, q_{i+1}} \) where

\[
S_{q_i, q_{i+1}} := \left\{ (x, x') \in M_{q_i} \times M_{q_{i+1}} : (q, x, q', x', u(\cdot), \tau) \in S \right. \\
\left. \text{for some } u(\cdot) \in U_{q_{i+1}}, \tau \in J_{q_{i+1}} \right\}
\]
A Survey of Hybrid Control Systems

SGP Systems

Also, we need

\[u_{i+1} \in U_{q_i, x_i(t_i), q_{i+1}, x_{i+1}(t_i)} \]

where

\[U_{q_i, x_i(t_i), q_{i+1}, x_{i+1}(t_i)} := \{ u(\cdot) \in U_{q_{i+1}} : (q_i, x_i, q_{i+1}, x_{i+1}, u(\cdot), \tau) \in S \text{ for some } \tau \in J_{q_{i+1}} \} \]
SGP Cost Functions

The cost function associated with this problem is of the following form

\[
C(X) = \sum_{j=1}^{\nu} \int_{t_{j-1}}^{t_j} L_{q_j}(x_j(t), u_j(t)) \, dt \\
+ \sum_{j=1}^{\nu-1} \Phi_{q_j, q_{j+1}}(x_j(t_j), x_{j+1}(t_j)) \\
+ \phi_{q_1, q_\nu}(x_1(t_0), x_\nu(t_\nu)).
\]
Let X be a solution to the above hybrid problem. Then there is an adjoint pair (p, λ) with $p = \{p_1, p_2, \ldots, p_\nu\}$, $\lambda \in \mathbb{R}^+$ such that

1. $-\dot{p}(t) = \partial_x H_i(t, x(t), p(t), u(t), \lambda)$
2. $-\dot{p}(t) = \partial_x H_i(t, x(t), p(t), u(t), \lambda)$
3. The Hamiltonian is maximized for this adjoint pair
Let X be a solution to the above hybrid problem. Then there is an adjoint pair (p, λ) with $p = \{p_1, p_2, \ldots, p_\nu\}$, $\lambda \in \mathbb{R}^+$ such that

- The switching condition below holds

$$(-p_i(t_i), p_{i+1}(t_i)) - \lambda \nabla \Phi_{q_i, q_{i+1}}(x_i(t_i), x_{i+1}(t_i)) \in TS_{q_i, q_{i+1}}^C$$
Hybrid Maximum Principle

Let X be a solution to the above hybrid problem. Then there is an adjoint pair (p, λ) with

$$p = \{p_1, p_2, \ldots, p_\nu\}, \quad \lambda \in \mathbb{R}^+$$

such that

- if $t_i - t_{i-1} \in \text{Int}(J_{q_i})$, then $\sup H_i = \sup H_\nu = 0$
- if $t_i - t_{i-1}$ is the left endpoint of a nontrivial J_{q_i}, then $\sup H_i \leq 0$
- if $t_i - t_{i-1}$ is the right endpoint of a nontrivial J_{q_i}, then $\sup H_i \geq 0$
Stratifications of \mathbb{R}^n

Assume that we have a finite set of disjoint embedded submanifolds $M_j \subset \mathbb{R}^n$ whose union is \mathbb{R}^n. Furthermore if $M_j \cap \overline{M_k} \neq \emptyset$, then $M_j \subset \overline{M_k}$.

Infinite horizon problem

Suppose our cost function is of the form

$$\int_0^\infty e^{-\beta t} L(x(t), u(t)) dt$$

with dynamics

$$\dot{x}(t) = f(x(t), u(t)) \quad x(0) = x_0.$$
Assumptions

We assume that on each submanifold M_i our controls are a compact set U_i, we have a continuous $f_i: M_i \times U_i \rightarrow \mathbb{R}^n$ and a cost L_i so that f_i is Lipschitz in the state variable, L_i is nonnegative and continuous. Finally, $f(x, u) = f_i(x, a)$ and $L(x, u) = L - i(x, u)$ when $x \in M_i$.
If we define a multifunction in an analogous manner, and take its convex, semicontinuous regularization, it can be shown that the value function solves the Hamilton-Jacobi equation.
Hybrid Time Domains

An alternative model of hybrid dynamics uses differential inclusions. First, we define a *compact hybrid time domain* as

$$
\bigcup_{j=0}^{J-1} ([t_j, t_{j+1}] \times \{j\}).
$$

And a *hybrid time domain* E is such that for any T, J then $E \cap [0, T] \times \{0, 1, \ldots, J\}$ is a compact hybrid time domain.
Dynamics of Teel System

We give our hybrid dynamics as

\[\dot{x} \in F(x) \text{ when } x \in C \]
\[x^+ \in G(x) \text{ when } x \in D \]

We refer to \(F \) and \(C \) as the \textit{flow map} and \textit{flow set}. Similarly, \(G \) and \(D \) are the \textit{jump map} and \textit{jump set}.
A hybrid arc is a hybrid time domain and a function x such that

$$\dot{x}((t, j) \in F(x(t, j))) \text{ if } x(t, j) \in C$$

on the interval (t_j, t_{j+1}) and

$$x(t, j + 1) \in G(x(t, j))$$

if $x(t, j) \in D$ and $(t, j), (t, j + 1) \in \text{dom } x$.
Example: The Bouncing Ball

A bouncing ball can be modeled easily with this framework. If x is the height of the ball above the floor, let

$$y = \begin{bmatrix} x \\ \dot{x} \end{bmatrix},$$

$$f(y) = \begin{bmatrix} y_2 \\ -g \end{bmatrix}$$

and

$$C = \{ y_1 > 0 \text{ or } y_1 = 0 \text{ and } y_2 > 0 \}.$$
Example: The Bouncing Ball

Then we model the jump condition by setting

$$D = \{ y_1 = 0 \text{ and } y_2 \leq 0 \}$$

and

$$G(y) \begin{bmatrix} 0 \\ -\mu y_2 \end{bmatrix}.$$ where $\mu \in (0, 1)$ is a dissipation factor.