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Notation

We work in a n-dimensional real Euclidean space E .

Sets will be indicated with capital letters.

Points and vectors will be lower case.

For scalars we use greek characters.
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Definition

M ⊂ E is affine if for any two points x and y in M, the line
passing through x and y is contained in M.

Examples

(a) ∅, E , singletons
(b) Subspaces
(c) Hyperplanes

General form

M = a + L,

a ∈ M, L subspace

dim(M) = dim(L)
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Affine hull

For S ⊂ E ,

aff (S) = smallest affine set containing S

=

{
m∑

i=1

λixi | xi ∈ S ,

m∑
i=1

λi = 1,m ∈ N

}

We define

dim (S) = dim aff (S)
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Definition

C ⊂ E is convex if for any two points x and y in C , the line
segment passing through x and y is contained in C .
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Properties

Set operations that preserve convexity

Arbitrary intersections.

Scalar multiplication.

Vector sum.

Image and inverse image under linear and affine
transformations.
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Convex hull

For X ⊂ E ,

conv (X ) = smallest convex set containing X

=

{
m∑

i=1

λixi | xi ∈ X , λi ≥ 0,

m∑
i=1

λi = 1,m ∈ N

}
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Simplices

An m-dimensional simplex is the convex hull of m + 1 affinely
independent vectors in E .
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Simplices and convex sets

Theorem

The dimension of a convex set C is the largest dimension of the
various simplices contained in C.
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Definition

K ⊂ E is a cone if it is nonempty and closed under positive scalar
multiplication.

K ⊂ E is a convex cone if it is a cone and it is convex ⇐⇒ K is
closed under addition and positive scalar multiplication
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Examples of convex cones

(a) Nonnegative orthant Rn
+ = {x ∈ Rn | each xi ≥ 0}.

(b) Positive orthant Rn
++.

(c) Open and closed half-spaces determined by hyperplanes
passing through the origin.

(d) Cone of vectors with nonincreasing components
Rn
≥ = {x ∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn}.
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Cone generated by a set

For a set X ⊂ E ,

cone (X ) = {smallest convex cone containing X} ∪ {0}

=

{
m∑

i=1

λixi | xi ∈ X , λi ≥ 0 ,m ∈ N

}
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Proposition

For a set S ⊂ E,
aff (S) = aff (conv S)
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Proposition

Let K be a convex cone containing the origin (in particular, the
condition is satisfied if K = cone (X ), for some X). Then

aff (K ) = K − K

= {x − y | x , y ∈ K}

is the smallest subspace containing K and K ∩ (−K ) is the
smallest subspace contained in K.
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Proposition

Every convex set C ⊂ E can be regarded as a cross-section of a
convex cone K ⊂ E × R

Proof.

Define

K = cone {(x , 1) | x ∈ C}
= {(λx , λ) |λ > 0, x ∈ C} ∪ {0}

Then C can be identified with the intersection between K and the
hyperplane {(y , λ) |λ = 1}
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Theorem (Part 1)

Let X be a nonempty subset of E . Then

(a) Every nonzero x in cone (X) can be represented as a positive
linear combination of vectors x1, . . . , xm from X that are
linearly independent.

Sketch of proof.

Let m be the smallest integer so that x is a positive linear
combination of elements x1, . . . , xm from X and prove by
contradiction that x1, . . . , xm are linearly independent.
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Theorem (Part 2)

Let X be a nonempty subset of E . Then

(b) Every x ∈ conv(X ) \ X can be represented as a convex
combination of vectors x1, . . . , xm from X that are affinely
independent.

Therefore, a vector in cone(X) (respect. conv(X)) may be
represented by no more than n (respect. n + 1) vectors in X .

Sketch of proof.

Apply Part 1 to Y = {(x , 1) | x ∈ X}.
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Corollary

Let X be a nonempty compact subset of E . Then conv(X) is also
a compact subset of E .

However, cone(X ) might fail to be closed even if X is compact.

If the set X is just closed, conv(X ) is not necessarily closed.
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