
Topology Syllabus & Review Problems for the Comprehensive

Examination

January 1, 2010

Topics Covered: The Core-I comprehensive examination in topology will cover the
fundamentals of two topics: General Topology of Point Sets and Homotopy Theory and
the Fundamental Group. The focus will be on the development of topological invariants.
Locally Euclidean spaces (manifolds) and simplicial complexes will be introduced and used
in many examples.

1 Syllabus for the Topological Spaces and Continuous Maps

The first half of the semester is a quick introduction to the basic concepts and theorems of
general topological spaces of point sets, (a.k.a. point-set or general topology). We will study
metric and general topological spaces together with continuous maps between them. The
central theme will be the development of topological invariants to distinguish topological
spaces one from another and homeomorphism is a key concept. The main properties
to be studied are open and closed sets, bases, sequences, continuity, homotopy, (path)-
connectedness and compactness, as well as their local versions. We also introduce several
constructions of spaces, including subspaces, product spaces, function spaces (particularly
loop spaces) and quotient (or identification) spaces, including cones and suspensions.

1. Topology (2nd edition) by James Munkres, Prentice Hall, 2000: Chapters 2, 3, 4, 5.1

2 Syllabus for the Fundamental Group & Covering Spaces

This second half introduces the basics of the fundamental group and covering spaces used in
algebraic and geometric topology. Beginning with Poincaré’s definition of the fundamental
group of a space, various methods of computation are developed (including the Seifert-
van Kampen theorem). Fundamental groups of surfaces and simple link complements
are computed. The basics of covering spaces are developed and applications include the
Brouwer fixed point theorem, the Borsuk-Ulam theorem, and invariance of dimension.
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1. Chapters 9, 11 & 13: Topology (2nd Edition) by James R. Munkres.

2. Chapter One: Algebraic Topology by Allen Hatcher, Cambridge University Press,
2002.

3 Review Problems for General Topology

1. Let X and Y be topological spaces, f : X → Y a function. Recall that “f is open”
means: if U is an open set in X then f(U) is open in Y .

(a) If f is continuous, does it follow that f is open? (Proof or counterexample.)

(b) If f is open, does it follow that f is continuous? (Proof or counterexample.)

(c) Show that if X = Y × Z (a product of topological spaces, with the product
topology) and f is the first projection, then f is open.

(d) Under the conditions and notation of (c), if F is closed in X = Y × Z, does it
follow that f(F ) is closed in Y ? (Proof or counterexample.)

2. Let f : X → Y be a quotient map of topological spaces, such that Y is connected and
each set f−1(y), y ∈ Y , is a connected subspace of X. Show that X is connected.

[Recall that a mapping f : X → Y of topological spaces is a quotient map if f is onto
(or surjective) and a subset U of Y is open if and only if f−1(U) is open.]

3. Recall that a metric d on a set X is called bounded if there is a positive real constant
M such that d(x, y) ≤M for any pair of points x, y in X. Show that given any metric
δ on a set X, there is a bounded metric d on X that induces the same topology as δ.

4. Let f : X → Y be a function between topological spaces. The graph of f is defined
by

Gf = {(x, y) ∈ X × Y | y = f(x)}.

(i) Show that if Y is Hausdorff and f is continuous, then Gf is closed.

(ii) Show that if Y is compact and Gf is closed, then f is continuous. (You may use
the fact that π1 : X × Y → X is a closed map when Y is compact.)

5. Let f : X → Y be a function from a topological space X to a space Y . We say that
f is continuous if f−1(V ) is open in X for every open subset V of Y . Show that f is
continuous (in the preceding sense) if and only if for all A ⊆ X, f(A) ⊆ f(A).

6. (i) Show that if f : X → Y is a continuous bijection from a compact space X to a
Hausdorff space Y , then f is a homeomorphism.

(ii) Give an example of topological spacesX and Y and a continuous bijection f : X →
Y that is not a homeomorphism.
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7. Let Y = {(0, y) ∈ R2 | −1 ≤ y ≤ 1} and let Z be the graph of the function
y = sin(π/x) for 0 < x ≤ 1. Is the set X = Y ∪ Z connected or disconnected in the
standard topology on R2? Prove your answer.

8. Prove that for A ⊂ X, A \ IntA = A ∩X \A by showing each set is contained in
the other.

9. Prove that a product of (finitely or infinitely many) connected spaces is connected.

10. Let p : X → Y be a continuous surjection. Show that if X is compact and Y is
Hausdorff then p is a quotient map.

11. Let f : S1 → R be continuous, where S1 is the unit circle in R2.

(a) Show that there is a point z ∈ S1 such that f(z) = f(−z).
(b) Show that f is not surjective.

12. Let X be a T0 space. (That is, for any two distinct points of X, there is an open set
containing exactly one of them.) Suppose that, for any x ∈ X and closed subset A
of X not containing x, there are disjoint open sets U 3 x and V ⊇ A. Prove that X
is Hausdorff.

13. Let F : X −→ Y be a continuous function between topological spaces X,Y , and let
A be a subset of X.

(a) If A is compact, prove that f(A) is compact.

(b) If A is connected, prove that f(A) is connected.

14. (a) Let X be a Hausdorff space and A be a compact subset of S. Prove that A is
closed.

(b) Let f : X −→ Y be a continuous map from a compact space S to a Hausdorff
space Y . Prove that f is a closed map.

15. Let X,Y be topological spaces, X = A ∪B where A,B are closed subsets of X, and
f : X −→ Y be a function such that the restrictions f∣∣A and f∣∣B are continuous with

respect to the relative topologies on A,B, respectively. Prove that f is continuous.

16. Let X be a topological space, let E be a connected subspace, and let A be a subset
of X sandwiched between E and its closure E:

E ⊂ A ⊂ E.

Prove that A is a connected subspace of X.
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17. Prove that a closed subset of a compact space is compact.

18. Let S denote the following union of three point-sets in the Euclidean plane R2:

S = {(t, 0) : 0 < t ≤ 1} ∪ {( 1
n
, s) : n = 1, 2, 3, . . . and 0 ≤ s ≤ 1} ∪ {(0, 1

2
)}.

State whether S is connected or not, and prove your assertion.

19. Let C be a subset of a topological space X.

(a) Prove that if C is connected, then the closure of C is connected.

(b) Give an example where C is connected but the interior of C is not connected.
(You may wish to take X = R2.)

20. Let p : X → Y be a quotient map, and f : X → Z a continuous function such
that f(x1) = f(x2) whenever p(x1) = p(x2). Show that there is a unique function
g : Y → Z such that g ◦ p = f , and that g is continuous.

21. Prove that a non-empty connected subset of a topological space X that is both open
and closed is a connected component of X.

22. Prove that a compact Hausdorff space is normal.

23. Let p : X → Y be a closed, continuous surjection. Prove that if Y is compact and
p−1(y) is compact for every y ∈ Y , then X is compact. [Hint: if U is an open set
containing p−1(y), there is a neighborhood V of y such that p−1(V ) ⊆ U .]

24. Let f : [−1, 1] → [−1, 1] be a continuous function. Prove that there is a point x0 of
[−1, 1] such that f(x0) = x0. [Hint: consider g(x) = (x− f(x))/|x− f(x)|.]

25. Give an example of a connected space that is not path-connected, and prove that it
has the stated properties.

26. Prove that a path-connected space is connected. Then, prove that a connected,
locally path-connected space is path-connected.

27. (a) Show that a metric space is normal.

(b) Show that a compact Hausdorff space is normal.

28. Let {Xα | α ∈ J } be a family of topological spaces, and let X =
∏
α∈J Xα with

the product topology. Let πα : X → Xα be the projection, and let f : Y → X be a
function from a topological space Y to X. Prove that f is continuous if and only if
the composite πα ◦ f is continuous for each α ∈ J .

29. Let C be a connected subset of a topological space X. Prove or disprove:
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(a) The closure C of C is connected.

(b) The interior C◦ of C is connected.

30. (a) Show that if f : X → Y is a continuous bijection from a compact space X to a
Hausdorff space Y , then f is a homeomorphism.

(b) Give an example of topological spaces X and Y and a continuous bijection
f : X → Y that is not a homeomorphism.

4 Review Problems for Homotopy & the Fundamental Group

1. Show that the following three conditions (on a topological space X) are equivalent:

(a) Every map S1 → X is homotopic to a constant map.

(b) Every map S1 → X extends to a map D2 → X.

(c) The fundamental group, π1(X,x0), is trivial for all x0 ∈ X.

2. Let {fi, gi : i = 0, 1} be four closed paths based at x0. Define the concept of path-
homotopy (denoted ') and also the operation of path multiplication (denoted f0◦f1).
Show that the following cancellation property holds for path-homotopy , if f0 ◦ g0 '
f1 ◦ g1 and g0 ' g1 then f0 ' f1.

3. Prove the Brouwer fixed point theorem in dimension two: Every continuous map
f : D2 → D2 has a fixed point.

4. Let X be a locally path connected space with an open cover, {U, V }, consisting of two
connected open sets such that U and V are both contractible and U ∩V is connected.
Compute its fundamental group. State carefully any basic results you use.

5. Let X = S1 ∨ S1, the join of two circles joined at a single point. Compute the
fundamental group of X from the fact that the fundamental group of S1 is isomorphic
to the integers, Z. Define covering space and explicitly construct a 3-fold covering
space of X.

6. A subset X of Rn is convex if the line segment between any two points of X is
contained in X; it is star-convex if there is some point x0 in X such that the line
segment from x0 to any other point of X is contained in X. Give an example of a
star-convex set that is not convex, and prove that any star-convex set is contractible.

7. Let f : X → Y be continuous. Let x1 and x2 be points of X, and let y1 = f(x1)
and y2 = f(x2). There are induced homomorphisms f1∗ : π1(X,x1) → π1(Y, y1)
and f2∗ : π1(X,x2) → π1(Y, y2). Show that if X is path-connected then there are
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isomorphisms φ : π1(X,x1) → π1(X,x2) and ψ : π1(Y, y1) → π1(Y, y2) such that the
following diagram commutes.

π1(X,x1)
f1∗−→ π1(Y, y1)yφ yψ

π1(X,x2)
f2∗−→ π1(Y, y2)

8. Let X be the subspace of R2 that is the union of two circles of radius 1 centered at
(−2, 0) and (2, 0) and the line segment from (−1, 0) to (1, 0). State the Seifert-van
Kampen Theorem, and use it to find the fundamental group of X.

9. Let p : (X̃, x̃0) → (X,x0) be a covering map, where X is path-connected and locally
path-connected, and X̃ is simply-connected. (That is, X̃ is the universal covering
space of X). Prove that the group of covering transformations of X̃ is isomorphic to
the fundamental group of X.

10. Let X be the join of two circles (Figure-8 space). Exhibit both a regular and an
irregular 3-fold covering of X.

11. Recall that a (non-empty) subset X of Rn is convex if the line segment between any
two points in X is contained in X. If X is convex, show that X is simply connected.

12. State the Seifert-Van Kampen Theorem. Use this theorem to show that the n-sphere
Sn is simply connected for n ≥ 2.

13. Let p : E → B be a covering space of a path-connected space B, and let x and y be
two points in B. Show that the sets p−1(x) and p−1(y) have the same cardinality.

14. LetX, Y , and Z be path connected, locally path connected spaces, and let p : X → Z,
q : X → Y , and r : Y → Z be continuous maps with p = r ◦ q. If p : X → Z and
r : Y → Z are covering maps, prove that q : X → Y is also a covering map.

15. Suppose that X and Y are topological spaces, and let x0 ∈ X and y0 ∈ Y . Prove
that π1(X × Y, x0 × y0) ∼= π1(X,x0)× π1(Y, y0).

16. Compute the fundamental group of S2 with n points removed, where n is a positive
integer. Also compute the fundamental group of R3 with the three coordinate axes
removed.

17. Let X = S1 ∨ S1, the wedge of two circles. Exhibit both a regular and an irregular
4-fold covering of X. Does X have an irregular 2-fold covering? Explain.

18. Let p : (E, e0) → (B, b0) be a covering map, where B and E are path-connected
and locally path-connected. Let H = p∗(π1(E, e0)) be the image of the fundamental
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group of E in π1(B, b0). Prove that the group of covering transformations of E is
isomorphic to N(H)/H, where N(H) is the normalizer of H.

19. Let X be path-connected and locally path-connected, and suppose that the funda-
mental group of X is finite. Prove that any continuous function f : X → S1 is
null-homotopic.

20. Let X = {(x, y, z) ∈ R3|x = 0; y = 0} ∪ {(x, y, z) ∈ R3|x2 + y2 = 1; z = 0} .
Calculate the fundamental group of R3 \X.

21. Show that a retract of a contractible space is contractible.

22. Let A be a path-connected subspace of a space X and a0 ∈ A. Show that the inclusion
induces a surjection from π1(A, a0) to π1(X, a0) if and only if every path in X with
endpoints in A is path-homotopic to a path in A.

23. Let X = S1 ∨S1, the wedge of two circles. Give an example of a regular 3-fold cover
of X. Give an example of an irregular 3-fold cover of X. Is there an irregular 2-fold
cover of X? Note the terminology used by Hatcher for regular and irregular is normal
and non-normal.

24. Derive a presentation of the fundamental group of a closed surface of genus two.
Show this group is non-abelian.

25. a) Complete the following definition: Two topological spaces X and Y are homotopy
equivalent if .....

b) Let X, Y , Z be topological spaces. Prove that if X is homotopy equivalent to Y ,
and Y is homotopy equivalent to Z, then X is homotopy equivalent to Z.

26. State the Seifert-van Kampen theorem and use it to compute the fundamental group
of the projective plane, RP 2.

27. LetX be Euclidean 3-space with the following two lines deleted,X = R3\{(t, 0, 1), (t, 0,−1)|t ∈
R}. Compute the fundamental group of X. (Be sure to justify your computation).

28. Prove that R2 is not homeomorphic to Rn for n > 2.

29. Give an example of a space whose fundamental group is a cyclic group of order six.
Provide a proof that the fundamental group is cyclic.

30. For each pair of spaces (X,A) in the following list, determine whether a retraction
r : X 7→ A exists or not. Justify your answer. If the retraction exists, sketch a
construction of such a retraction.

(a) X = R and A = [0, 1], a closed interval.
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(b) X = R2\(0, 0), the punctured plane and A = (0, 1), a single point.

(c) X = D2 = {(x, y) ∈ R2|x2 + y2 ≤ 1}, A = S1 = {(x, y) ∈ R2|x2 + y2 = 1}.
(d) X is the Möbius band and A is the boundary circle.

31. Prove that there is no open cover, {U, V }, of the real projective plane, RP 2, with two
connected open sets such that U and V are both contractible and U ∩V is connected.

32. State precisely the Seifert-van Kampen theorem and use it to compute the funda-
mental group of the connected sum of two projective planes, RP 2 (equivalently, the
space obtained by identifying two Möbius bands along the boundary circle). Describe
all the regular covering spaces.

33. Let p : X̃ → X be a covering space with path-connected cover. Explicitly define the
right action of π1(X,x) on the fiber p−1(x) for a given point x ∈ X. Show that this
is a group action which satisfies the transitive property.

34. Let f be a continuous function from the real projective plane P 2 to the circle S1.
Show that the induced homomorphism of fundamental groups is trivial, and use this
to prove that f is null-homotopic.

35. Let p : E → X be the covering map indicated in Figure below. Determine the group
of covering transformations. Is this covering regular?
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Figure 1: A covering map
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