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Abstract

We establish an algebraic foundation to complement the improved geometric codes

of Feng and Rao. Viewing linear codes as affine variety codes, we utilize the Feng-

Rao minimum distance bound to construct codes with relatively large dimensions.

We examine higher-dimensional affine hypersurfaces with properties similar to

those of Hermitian curves. We determine a Gröbner basis for the ideal of the

variety of rational points on certain affine Fermat varieties. This result is applied

to determine parameters of codes defined from Fermat surfaces.
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Introduction

Linear codes obtained by methods from algebraic geometry have gained signifi-

cant notoriety since 1982, when Tsfasman, Vlǎduţ, and Zink [10] determined the

existence of a sequence of algebraic-geometric (or Goppa) codes that exceeded

the Gilbert-Varshamov bound on the minimum distance. In 1995, G.-L. Feng and

T.R.N. Rao [4] introduced the concept of improved geometric Goppa codes from

plane curves. Absent of algebraic geometry, they were able to improve the current

one-point Goppa codes from curves that have a single point at infinity.

The goal of this dissertation is to produce an algebraic foundation to complement

these so-called “improved geometric codes.” We shall also expand this notion to

include affine varieties of arbitrary dimension.

In Chapter 1, we describe affine varieties and a formation of linear codes defined

by them. We also develop and expand the fundamentals of improved geometric

codes and the Feng-Rao bound on the minimum distance of a code. We conclude

this chapter by examining codes from Type I curves, including Hermitian curves.

In Chapter 2, we review the theory of Gröbner bases and investigate its applica-

tions to higher-dimensional varieties. We determine a Gröbner basis for the ideal

of the variety of rational points on certain affine Fermat varieties. This result is

applied to determine parameters of codes defined from Fermat surfaces.

Generally, we will have restrictions on code length and minimum distance. We

will require the Feng-Rao bound on the minimum distance to create codes with

relatively large dimensions.
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Chapter 1
The Feng-Rao Bound and Affine Variety
Codes

1.1 Affine Variety Codes

Let Fq be the finite field with q elements. Let S ⊆ Fq[x1, . . . , xk]. Let Fq denote

an algebraic closure of Fq. The k-tuple (a1, . . . , ak) ∈ F
k
q is called a solution of S

if f(a1, . . . , ak) = 0 for all f in S. The affine variety in Fk
q defined by S, denoted

V (S), is the set of all solutions of S. The elements (a1, . . . , ak) of V (S) are known

as the points of V (S). Further, if each coordinate of a point of V (S) lies in Fq,

then the point is called an Fq-rational point of V (S). Note that if I is the ideal of

Fq[x1, . . . , xk] generated by the set S, then V (I) = V (S).

Definition 1.1. For I an ideal of Fq[x1, . . . , xk], define

Iq := I + (xq
1 − x1, . . . , x

q
k − xk).

Remark 1.2. The points of V (Iq) are precisely the Fq-rational points of V (I).

Since the polynomials xq
i − xi ∈ Iq for each i such that 1 ≤ i ≤ k, we have that

Iq is a zero-dimensional ideal. Moreover, by Seidenberg’s Lemma 92 [9], Iq is in

fact a radical ideal.

The ring R = Fq[x1, . . . , xk]/Iq is called the coordinate ring of the variety V (Iq).

The elements of R are designated by f̄ , where f̄ represents the equivalence class

f +Iq, for each polynomial f . Let An = Fn
q be affine n-space over Fq, where n is the

number of points of the affine variety V (Iq). After ordering the points P1, . . . , Pn of

V (Iq), define an evaluation map φ : R 7→ An by φ(f̄) = (f(P1), . . . , f(Pn)), where

f̄ = f +Iq. The mapping φ is easily seen to be an isomorphism of Fq-vector spaces.

Definition 1.3. A linear code of length n over Fq is a vector subspace of Fn
q .
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Let I be an ideal of Fq[x1, . . . , xk] and P1, . . . , Pn be all the points of V (Iq). Let

L be an Fq-vector subspace of the coordinate ring R.

Definition 1.4. The affine variety codes, C(I, L) and C⊥(I, L), are defined as

follows:

C(I, L) = φ(L)

C⊥(I, L) = φ(L)⊥

where φ(L) is the image of L under the evaluation map φ, and φ(L)⊥ is the or-

thogonal complement of φ(L) with respect to the usual inner product on An.

Remark 1.5. (i) Every Fq-linear code can be represented as an affine variety code.

(ii) A different ordering of the points would yield an equivalent code, so a linear

code with the same length, dimension, and minimum distance.

We define a weighted-degree lexicographic ordering on the (monic) monomials

of Fq[x1, . . . , xk]. For each of the variables xj, where 1 ≤ j ≤ k, we can assign a

positive integer, wt(xj). The weight of a monomial, xi1
1 xi2

2 . . . xik
k , is defined as

wt(xi1
1 xi2

2 . . . xik
k ) =

k
∑

j=1

ijwt(xj).

To define the total ordering <t on the monomials, apply the rule:

xi1
1 xi2

2 . . . xik
k <t xj1

1 xj2
2 . . . xjk

k if

(i) wt(xi1
1 xi2

2 . . . xik
k ) < wt(xj1

1 xj2
2 . . . xjk

k ) or

(ii) wt(xi1
1 xi2

2 . . . xik
k ) = wt(xj1

1 xj2
2 . . . xjk

k ) and there exists an l

such that im = jm for 1 ≤ m ≤ l − 1 and il < jl.

With this ordering we can further describe the elements of the coordinate ring R

of the variety V (Iq). Let T k denote the set of (monic) monomials of Fq[x1, . . . , xk],

i.e. T k = {xα1
1 . . . xαk

k |αi ∈ N for 1 ≤ i ≤ k}. To simplify notation, we will some-

times write xα for xα1
1 . . . xαk

k where α = (α1, . . . , αk) ∈ Nk. For every nonzero
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polynomial f ∈ Fq[x1, . . . , xk], we can express f as f = c1xβ1 + c2xβ2 + · · ·+ csxβs

with 0 6= ci ∈ Fq, xβi ∈ T k and xβs <t · · · <t xβ2 <t xβ1 . Define the leading

monomial of f , denoted lm(f), by lm(f) = xβ1 . Also, define the leading term of

f , denoted lt(f), by lt(f) = c1xβ1 .

Definition 1.6. The footprint or ∆-set of an ideal I ⊆ Fq[x1, . . . , xk] is defined by

∆(I) := T k \ {lm(f)|f ∈ I, f 6= 0}.

Example 1.7. Let I be the principal ideal in F4[x1, x2] generated by the poly-

nomial x3
1 + x2

2 + x2. This is known as the (affine) Hermitian curve over F4. Note

that Iq = 〈x3
1 + x2

2 + x2, x4
1 − x1, x4

2 − x2〉. Let wt(x1) = 2 and wt(x2) = 3. An

explanation of the motivation to choose these integers will follow later. Then we

have ∆(Iq) = {1, x1, x2
1, x2, x1x2, x2

1x2, x2
2, x

3
2}.

Definition 1.8. For an ideal I ⊆ Fq[x1, . . . , xk], we define the H-sequence as

H := {hi}n′
i=1 the increasing sequence (under the ordering <t) of the elements

of ∆(Iq). With a slight abuse of notation, we will indicate that the monomial hi

appears in the H-sequence by the notation hi ∈ H.

Remark 1.9. For hi ∈ H, we claim that if a monomial m divides hi, then m ∈ H.

For if not, m /∈ H implies there exists a polynomial f ∈ Iq such that lm(f) = m.

Therefore, (hi
m )f ∈ Iq and lm((hi

m )f) = (hi
m )m = hi. Thus, hi /∈ H, which is a

contradiction.

In Example 1.7, H = {1, x1, x2, x2
1, x1x2, x2

2, x
2
1x2, x3

2}. Note that the correspond-

ing weights of each of the eight monomials are distinct.

Proposition 1.10. The elements of the set {h̄1, . . . , h̄n′} form a basis for the co-

ordinate ring R. Therefore, dimFq[x1, . . . , xk]/Iq = |∆(Iq)| = n.
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Proof. Since R is spanned by the set of equivalence classes of monomials that

are not the leading monomial of any polynomial in Iq, it suffices to show that

{h̄1, . . . , h̄n′} is a linearly independent set of elements of R. Suppose there exists

c1, c2, . . . , cn′ ∈ Fq not all zero such that c1h̄1 + c2h̄2 + · · ·+ cn′h̄n′ = 0̄. Therefore,

f = c1h1+c2h2+· · ·+cn′hn′ ∈ Iq. Then lm(f) = hi for some i. However, hi ∈ ∆(Iq)

implies that f /∈ Iq, which is a contradiction. It follows that n = n′. 2

1.2 Improved Geometric Codes

We will next present several definitions that were first given by G.-L. Feng and T.

R. N. Rao. [4]

Definition 1.11. Let L(r) be the the linear subspace of R generated by the set

{h̄1, . . . , h̄r}. More generally, let L(r, v1, . . . , vl) denote the subspace generated by

{h̄1, . . . , h̄r, h̄v1 , . . . , h̄vl} where r + 1 < v1 < · · · < vl for some l ≥ 0. Note that if

l = 0 then L(r, v1, . . . , vl) = L(r).

Definition 1.12. If hi = xi1
1 xi2

2 . . . xik
k and hj = xj1

1 xj2
2 . . . xjk

k then put hi,j :=

xα1
1 xα2

2 . . . xαk
k where for l = 1, . . . , k,

αl =















il + jl if il + jl < q

il + jl − (q − 1) otherwise.

By this construction, hi,j ≤t hihj. However, hi,j and hihj are equal as functions;

i.e. when viewed as mappings from Fk
q into Fq, hi,j and hihj are identical.

Definition 1.13. Let hr ∈ H. A monomial h is said to be consistent with hr if

h̄ ∈ L(r) \ L(r − 1) and wt(h) = wt(hr). If h is consistent with hr, then we write

h ∼ hr.

Lemma 1.14. If h <t hr, then h̄ ∈ L(r − 1).
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Proof. Suppose h <t hr and h̄ ∈ L(s) for some s ≥ r. Then h+Iq =
∑s

i=1(kihi)+Iq

for some ki ∈ Fq for 1 ≤ i ≤ s with ks 6= 0. Thus, f =
∑s

i=1(kihi) − h ∈ Iq and

lm(f) = hs since ks 6= 0 and h <t hr ≤t hs. This is a contradiction since the

monomial hs ∈ ∆(Iq). 2

Corollary 1.15. If h ∼ hr, then hr ≤t h.

Lemma 1.16. If h̄i,j ∈ L(r)\L(r − 1) and wt(hi)+wt(hj) = wt(hr), then hihj =

hi,j ∼ hr.

Proof. In order to show that hi,j ∼ hr, we only need to show that wt(hi,j) = wt(hr).

If hihj = hi,j then the conclusion is satisfied. Assume hihj 6= hi,j. Then we have

wt(hi,j) < wt(hi) + wt(hj) = wt(hr). Hence, hi,j <t hr. By Lemma 1.14, we have

h̄i,j ∈ L(r − 1), which is a contradiction. 2

Definition 1.17. Let hi, hj ∈ H such that wt(hi)+wt(hj) ≤ wt(hn) and hi,j ∼ hr.

If for each pair (u, v) such that 1 ≤ u ≤ i, 1 ≤ v ≤ j and (u, v) 6= (i, j) we have

h̄u,v ∈ L(r − 1), then hi,j is called a well-behaving term (consistent with hr).

Lemma 1.18. Let hi, hj, and hr ∈ H. If hihj = hr then hi,j is a well-behaving

term consistent with hr.

Proof. Suppose hi, hj, hr ∈ H such that hihj = hr. Then hr = hihj = hi,j. Clearly,

hi,j ∼ hr. Let (u, v) be such that 1 ≤ u ≤ i, 1 ≤ v ≤ j and (u, v) 6= (i, j). Then

hu,v ≤t huhv <t hihj = hr. Hence, h̄u,v ∈ L(r − 1). 2

In Example 1.7, note that h4,4 = x1 = h2 although h4h4 = x4
1. Thus, h4,4 is

consistent with h2. However, h4,4 is not a well-behaving term since h̄1,2 ∈ L(2). On

the other hand, since x3
1 + x2

2 + x2 ∈ Iq, we have h2,4 = x3
1 ∼ x2

2 = h6. Therefore,

h2,4 ∼ h6. Upon further inspection, h2,4 is in fact a well-behaving term.
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Definition 1.19. Define Nr := {(i, j)|hi,j is a well-behaving term consistent with

hr}. Put Nr := |Nr|.

In Example 1.7 N1 = 1, N2 = 2, N3 = 2, N4 = 3, N5 = 4, N6 = 5, N7 = 6, N8 = 8.

Since x3
1 + x2

2 + x2 ∈ Iq, we have x3
1 ∼ x2

2 and x3
1x2 ∼ x3

2. Hence, the monomials

h2,4 and h4,2 as well as h1,6, h3,3, and h6,1 are all consistent with h6. Upon further

inspection, they are all well-behaving terms also. Hence, N6 = 5. Also, the mono-

mials h2,7, h4,5, h5,4, and h7,2 as well as h1,8, h3,6, h6,3, and h8,1 are all consistent with

h8. Upon further inspection, they are all well-behaving terms also. Hence, N8 = 8.

Lemma 1.20. For 1 ≤ r ≤ n, Nr is uniquely expressible as

Nr = {(i1, j1), . . . , (iNr , jNr)}

where i1 = jNr < i2 = jNr−1 < · · · < iNr = j1.

Proof. Let (iα, jα) and (iβ, jβ) be distinct elements of Nr, where without loss of

generality, we may assume iα ≤ iβ. Assume jα ≤ jβ. Then iα ≤ iβ and jα ≤ jβ with

(iα, jα) 6= (iβ, jβ) along with hiα,jα ∼ hr imply that hiβ ,jβ is not a well-behaving

term. This is a contradiction. Thus, jβ < jα. Suppose iα = iβ, then jβ < jα and

hiβ ,jβ ∼ hr imply hiα,jα is not a well-behaving term. This is also a contradiction.

Thus, for 1 ≤ l ≤ Nr, each il is distinct. Also, since hi,j = hj,i then (i, j) ∈ Nr

implies that (j, i) ∈ Nr. 2

Proposition 1.21. For hr = xr1
1 . . . xrn

n ∈ H, Nr ≥
∏n

i=1(ri + 1).

Proof. For each divisor d of hr, we have d ∈ H and hr
d ∈ H by Remark 1.9. There

are
∏n

i=1(ri + 1) such divisors. Thus each divisor yields a distinct pair (i, j) such

that hihj = hr. By Lemma 1.18, each such hi,j is a well-behaving term consistent

with hr. 2
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It is easy to see that Nr can be strictly greater than just the number of monomial

divisors of hr. Consider h6 = x2
2 from Example 1.7. The number of divisors of x2

2

is 3 and N6 = 5.

Definition 1.22. Let Hr denote the r×n matrix defined by Hr := [hi(Pj)], where

1 ≤ i ≤ r and 1 ≤ j ≤ n. Note that Hr is a parity check matrix for the affine

variety code C⊥(I, L(r)).

Definition 1.23. Consider the code C⊥(I, L) where L = L(r, v1, . . . , vl). Define

H∗
r :=





















Hr

hv1(P1) · · · hv1(Pn)
...

...
...

hvl(P1) · · · hvl(Pn)





















.

Note that H∗
r is a parity check matrix for C⊥(I, L) and if l = 0, then H∗

r = Hr.

We will now discuss the minimum distance of the codes with parity check matrix

H∗
r . Let h′i := (hi(P1), . . . , hi(Pn)) and h′i,j := (hi,j(P1), . . . , hi,j(Pn)). For each

c = (c1, . . . , cn) ∈ Fn
q , 1 ≤ i ≤ n, and 1 ≤ j ≤ n define the following syndromes:

si(c) := h′ic
T and Si,j(c) := h′i,jc

T . Note that if c is a codeword, then si(c) = 0

for i = 1, 2, . . . , r, v1, v2, . . . , vl, and that Si,j(c) = 0 if h̄i,j ∈ L(r, v1, . . . , vl). Let

Sc := [Si,j(c)] be the n × n matrix of syndromes. Since hi,j and hihj are equal as

functions, then Sc = HnD(c)HT
n where D(c) is the diagonal n × n matrix with c

on the diagonal,

D(c) =





















c1 0 . . . 0

0 c2
. . . ...

... . . . . . . 0

0 . . . 0 cn





















.

8



The square matrix Hn must have full rank. For if there existed k1, . . . , kr ∈ Fq

such that
∑n

i=1(kih′i) = (0, . . . , 0), then the function f =
∑n

i=1(kihi) must vanish

at each of the points P1, . . . , Pn. Hence, f ∈ I(V (Iq)) = Iq since Iq is radical.

However, lm(f) ∈ H implies that lm(f) ∈ ∆(Iq), which is a contradiction. Since

Hn and HT
n both have full rank, then we have rank Sc = rank D(c) = wt(c).

Proposition 1.24. Suppose c = (c1, . . . , cn) is a codeword of the code with parity

check matrix H∗
r . If sr+1(c) 6= 0, then wt(c) ≥ Nr+1.

Proof. Since c is a codeword, then si(c) = 0 for 1 ≤ i ≤ r. For each of the Nr+1-

many hi,j which are well-behaving terms consistent with hr+1, we have Si,j(c) 6= 0.

This follows since each h̄i,j ∈ L(r + 1)\L(r) implies hi,j + Iq =
∑r+1

i=1 (kihi)+ Iq for

some ki ∈ Fq, 1 ≤ i ≤ r + 1 with kr+1 6= 0. Thus, there exists a polynomial f ∈ Iq

such that hi,j =
∑r+1

i=1 (kihi) + f . Then,

h′i,j =
r+1
∑

i=1

(kih′i) + (f(P1), . . . , f(Pn)).

Since f ∈ Iq, we have

Si,j(c) =
r+1
∑

i=1

(kih′ic
T ) + (0, . . . , 0)cT =

r+1
∑

i=1

(kisi(c)) = kr+1sr+1(c)

since si(c) = 0 for 1 ≤ i ≤ r. Since kr+1 6= 0 and sr+1(c) 6= 0, we have Si,j(c) 6= 0.

However, hi,j a well-behaving term implies that for each pair (u, v) such that

1 ≤ u ≤ i, 1 ≤ v ≤ j and (u, v) 6= (i, j) we have h̄u,v ∈ L(r). Thus Su,v(c) = 0. Let

Nr+1 = {(i1, j1), . . . , (iNr+1 , jNr+1)} where i1 = jNr+1 < i2 = jNr < · · · < iNr+1 = j1

as denoted in Lemma 1.20. For 1 ≤ l ≤ Nr+1, the jl-th row of the matrix Sc

has zeros in the first il − 1 entries and the ilth entry, namely Sil,jl(c), is nonzero.

Since i1 < i2 < · · · < iNr+1 , then the set of rows {h′j1 , . . . , h
′
jNr+1

} are linearly

independent. Hence, rank Sc = wt(c) ≥ Nr+1. 2
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Theorem 1.25. Suppose H∗
r is a parity check matrix of a nontrivial linear code.

Let δ′ := min{Nv|v /∈ {1, . . . , r, v1, . . . , vl}}, then the code has minimum distance

at least δ′. In this case, δ′ is called the Feng-Rao bound for the minimum distance.

Proof. Let c be a nonzero codeword. Let p be the smallest index such that su(c) =

0 for 1 ≤ u ≤ p and sp+1(c) 6= 0. Let’s show the existence of such a p < n.

Assume su(c) = 0 for 1 ≤ u ≤ n. Then h′uc
T = 0 for 1 ≤ u ≤ n. Therefore,

c ∈ C⊥(I, L(n)). However, C⊥(I, L(n)) has dimension 0. Thus, c = (0, . . . , 0). This

is a contradiction. Note that p + 1 /∈ {1, . . . , r, v1, . . . , vl} since c is a codeword.

However, c is also a codeword for C⊥(I, L(p)). By Proposition 1.24, we know that

wt(c) ≥ Np+1 ≥ δ′. 2

Suppose you desire a code of length n to have a designed minimum distance of

δ. Simply construct an affine variety code C⊥(I, L) where V (Iq) has n points and

L is the linear subspace of the coordinate ring R spanned by {h̄i|hi ∈ H, Ni < δ}.

Then L can be expressed in the form L(r, v1, . . . , vl) where

(i) for 1 ≤ v ≤ r, we have Nv < δ;

(ii) Nr+1 ≥ δ;

(iii) for r + 1 < v ≤ n, if Nv < δ then v ∈ {v1, . . . , vl}.

For the case when I defines a plane curve that has one point at infinity, these

codes are the so-called “improved” geometric Goppa codes of Feng and Rao [4].

They are constructed by starting with the usual geometric Goppa code where

L = L(1, 2, . . . , vl) which has the same minimum distance bound δ. The above

construction deletes certain generators of L(1, 2, . . . , vl) while maintaining the same

minimum distance bound. When generators are deleted, the dimension of L is

decreased, which in turn increases the dimension of the code C⊥(I, L), thereby

forming an “improved” code. Note that δ′ as defined in Theorem 1.25 is also a

10



lower bound on the minimum distance of the constructed code. Note that δ ≤ δ′.

Therefore, in order to obtain a tighter lower bound, we may assume δ = Nv for

some v.

Thus, the minimum distance of the code C⊥(I, L), where L = L(r, v1, . . . , vl),

is bounded below by some Nv. Recall, Nv depends on the number of hi,j ∼ hv

(i.e., wt(hi,j) = wt(hv) and h̄i,j ∈ L(v) \ L(v − 1)). Hence, in order to increase the

bound on the minimum distance, we must increase the number of such hi,j. To

accomplish this it is beneficial to assign the weights of each of the variables such

that each generator polynomial of I has at least two monomials of equal weight. In

Example 1.7, by assigning wt(x1) = 2 and wt(x2) = 3, we obtain wt(x3
1) = wt(x2

2)

for the lone generator polynomial x3
1 + x2

2 + x2.

Definition 1.26. Define Pr := {(i, j)|wt(hi) + wt(hj) = wt(hr)}.

Theorem 1.27. Let V (Iq) be an affine variety, where I is an ideal in Fq[x1, . . . , xn].

Let H be the monomial sequence obtained from ∆(Iq). Then Nr ⊆ Pr.

Proof. Let (i, j) ∈ Nr. Suppose hi = xi1
1 . . . xin

n and hj = xj1
1 . . . xjn

n ∈ H. We know

il ≤ q − 1 and jl ≤ q − 1 for 1 ≤ l ≤ n. Consider the monomials hu = xu1
1 . . . xun

n

and hv = xv1
1 . . . xvn

n where for 1 ≤ l ≤ n :

ul =















il + jl − (q − 1) if il + jl ≥ q

il otherwise

and

vl =















0 if il + jl ≥ q

jl otherwise.

Note that ul ≤ il and vl ≤ jl for 1 ≤ l ≤ n. Therefore, hi is a multiple of hu and hj

is a multiple of hv. Thus hu, hv ∈ H. Assume there exists an l such that il + jl ≥ q.

11



Then, hu ≤t hi and hv <t hj. This implies that u ≤ i, v < j and (u, v) 6= (i, j).

However, by construction hu,v = hi,j ∼ hr, so that h̄u,v ∈ L(r) \ L(r − 1). Thus,

hi,j is not a well-behaving term, which is a contradiction. Therefore, il + jl < q for

1 ≤ l ≤ n, and so hihj = hi,j. Hence wt(hi) + wt(hj) = wt(hi,j) = wt(hr), since

hi,j ∼ hr, which implies that (i, j) ∈ Pr. 2

Therefore a necessary condition for hi,j to be a well-behaving term consistent

with hr is that it must satisfy: wt(hi) + wt(hj) = wt(hr).

Corollary 1.28. If (i, j) ∈ Nr, then hi,j = hihj.

Example 1.29. Let I be the principal ideal in F8[x1, x2] generated by the poly-

nomial x3
1 +x1x3

2 +x2. This is known as the affine Klein quartic curve over F8. The

variety V (Iq) contains 22 points. Let wt(x1) = 3 and wt(x2) = 2. Then we have

∆(Iq) = {xα
1xβ

2 |0 ≤ α ≤ 2, 0 ≤ β ≤ 7, and if α > 0, then β < 7}.

Thus, the H-sequence is

{1, x2, x1, x2
2, x1x2, x3

2, x
2
1, x1x2

2, . . . , x
2
1x

6
2}.

Note that

P6 = P7 = {(1, 7), (1, 6), (2, 4), (3, 3), (4, 2), (6, 1), (7, 1)}.

However, N6 = {(1, 6), (2, 4), (4, 2), (6, 1)} and N7 = {(1, 7), (3, 3), (7, 1)}. Hence,

N6 6= P6 and N7 6= P7.

Whenever wt(hi) = wt(hj), we have Pi = Pj. However, since Ni and Nj are

disjoint, we know that Ni 6= Pi and/or Nj 6= Pj. In the next section we will

discuss a class of codes in which Nr = Pr for each r.

Remark 1.30. Kirfel and Pellikaan [7] defined a minimum distance bound which

they originally called the Feng-Rao bound, but which was later renamed the order
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bound [5]. This bound is related to the sets Pr defined above. The Feng-Rao bound

is tighter than the order bound to the true minimum distance. However, for Type

I curves, it follows from Theorem 1.35 that these bounds are identical.

1.3 Type I Curves

Definition 1.31. If wt(hi) < wt(hi+1) for 1 ≤ i ≤ n− 1, then the H-sequence is

said to contain distinct weights.

Lemma 1.32. If the H-sequence contains distinct weights, then

Nr = {(i, j)|hi,j ∼ hr}.

Proof. We need to show that if hi,j ∼ hr then hi,j is a well-behaving term. For any

u ≤ i and v ≤ j with (u, v) 6= (i, j), we have that

wt(hu,v) ≤ wt(hu) + wt(hv) < wt(hi) + wt(hj) = wt(hr).

Hence, h̄u,v ∈ L(r − 1). 2

Definition 1.33. The affine plane curves over Fq defined by the principal ideal

I = 〈xa
1 + xb

2 + f(x1, x2)〉 ⊆ Fq[x1, x2] where gcd(a, b) = 1 and deg f < min{a, b}

are the so-called Type I curves of Feng and Rao. We may assume that a < q and

b < q.

Given a Type I curve, we set wt(x1) = b and wt(x2) = a so that wt(xa
1) = wt(xb

2).

Let H = {hi}n
i=1 be the corresponding sequence of the elements of ∆(Iq).

Proposition 1.34. For Type I curves, H contains distinct weights.

Proof. Since xa
1 + xb

2 + f(x1, x2) ∈ Iq, its leading monomial, xa
1 /∈ ∆(Iq). Thus,

any multiple of xa
1 is not in ∆(Iq). Suppose there exists two monomials of H,

hi = xi1
1 xi2

2 and hj = xj1
1 xj2

2 where i1 < a and j1 < a such that wt(hi) = wt(hj).

Then i1b + i2a = wt(hi) = wt(hj) = j1b + j2a implies that a(i2 − j2) = b(j1 − i1).

13



However, |j1 − i1| < a and gcd(a, b) = 1 imply that i1 = j1 and i2 = j2. Thus,

hi = hj. Hence, H contains distinct weights. 2

Theorem 1.35. For Type I curves, Pr = Nr for 1 ≤ r ≤ n.

Proof. By Lemma 1.32 and Proposition 1.34, we know that Nr = {(i, j)|hi,j ∼ hr}.

By Theorem 1.27, it suffices to show that (i, j) ∈ Pr implies that hi,j ∼ hr.

Suppose hi = xi1
1 xi2

2 , hj = xj1
1 xj2

2 , and hr = xr1
1 xr2

2 are members of H such that

wt(hi) + wt(hj) = wt(hr). Since i1, j1, and r1 are each less than a, then either

hr = hihj or hr = hihjx−a
1 xb

2 = xi1+j1−a
1 xi2+j2+b

2 . If hr = hihj, then by Lemma 1.18,

the conclusion is satisfied. We may assume that hr 6= hihj. Then, i1 + j1 = r1 + a

and i2 + j2 + b = r2. Therefore,

hihj = xr1+a
1 xr2−b

2 = xr1
1 xr2−b

2 (g − xb
2 − f) = xr1

1 xr2−b
2 g − hr − xr1

1 xr2−b
2 f

where g = xa
1 + xb

2 + f(x1, x2), the defining polynomial for the ideal I. Now,

xr1
1 xr2−b

2 g ∈ Iq and wt(hr) > wt(xr1
1 xr2−b

2 lm(f)). Therefore, h̄ih̄j ∈ L(r) \L(r − 1).

To apply Lemma 1.16, we want h̄i,j ∈ L(r) \ L(r − 1). Assume that hi,j 6= hihj.

Since r2 − b < q, we have r1 + a ≥ q. Thus, hihj − hi,j = p(x1, x2)(x
q
1 − x1)

for some polynomial p(x1, x2). Since xq
1 − x1 ∈ Iq, we have h̄i,j = h̄ih̄j. Hence,

h̄i,j ∈ L(r) \ L(r − 1) and by Lemma 1.16, hi,j ∼ hr. 2.

Definition 1.36. A special class of Type I curves are the Hermitian curves. They

are curves in which I = 〈xq
1 + xq+1

2 + x1〉 ⊆ Fq2 [x1, x2]. The variety V (Iq2) has q3

rational points.

Remark 1.37. In Definition 1.36, we could have also included ideals of the form

I∗ = 〈xq
2 + xq+1

1 + x2〉. Their footprints, ∆(Iq2) and ∆(I∗q2) are not equal. However,

for their respective monomial sequences, H = {hi}q3

i=1 and H∗ = {h∗i }
q3

i=1, we do

have the property that wt(hi) = wt(h∗i ) for 1 ≤ i ≤ n = q3. Since Pr = Nr
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for 1 ≤ r ≤ n, the codes C⊥(I, L) and C⊥(I∗, L) where L = L(r, v1, . . . , vl)

have the exact same minimum distance bound. Since the length, dimension, and

minimum distance bounds are equal, we can simply examine the case as stated in

the definition.

For Hermitian curves,

∆(Iq2) = {xα1
1 xα2

2 |0 ≤ α1 ≤ q − 1 and 0 ≤ α2 ≤ q2 − 1}.

For hr = xr1
1 xr2

2 ∈ H we can compute Nr. Since the x1 exponent of any monomial

in the H-sequence is bounded above by q − 1, we have

Nr = Pr = {(i, j)|wt(hi) + wt(hj) = wt(hr)}

= {(i, j)|hihj = hr or hihj = xr1+q
1 xr2−q−1

2 }.

Thus,

Nr = |Nr| = |{monomial divisors of either hr or xr1+q
1 xr2−q−1

2 }|

=















(r1 + 1)(r2 + 1) if r2 ≤ q

(r1 + 1)(r2 + 1) + (q − r1 − 1)(r2 − q) otherwise.

Example 1.38. Consider the Hermitian curve over F9 defined by the principal

ideal I = 〈x3
1 + x4

2 + x1〉 ⊆ F9[x1, x2]. We set wt(x1) = 4 and wt(x2) = 3. Also,

∆(I9) = {xα1
1 xα2

2 |0 ≤ α1 ≤ 2 and 0 ≤ α2 ≤ 8}. Therefore, the H-sequence is

{1, x2, x1, x2
2, x1x2, x2

1, x
3
2, . . . , x

2
1x

8
2}.

Then, N1 = 1, N2 = 2, N3 = 2, N4 = 3, N5 = 4, N6 = 3, N7 = 4. Also, for r ≥ 8

we have Nr ≥ 6. Hence, the affine variety code C⊥(I, L(7)) over F9 has length 27,

dimension 20, and minimum distance at least 6.
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Chapter 2
Codes on Fermat Surfaces

2.1 Gröbner Bases

In this section we will introduce some Gröbner basis theory necessary for the subse-

quent sections of this chapter. We shall mostly follow the notation and terminology

of Adams and Loustaunau [1]. Fix a monomial ordering.

Definition 2.1. Let f and g be two nonzero polynomials in Fq[x1, . . . , xk]. We say

that f reduces to r modulo g (or by g) in one step, denoted by

f
g−→ r,

if and only if lm(g) divides a nonzero term X that appears in f and

r = f − X
lt(g)

g.

Note that we have subtracted from the polynomial f the entire term X and

have replaced it with strictly smaller terms under our ordering. For the case when

X = lt(f), we are applying the division algorithm to f by dividing by g and

receiving r as our remainder.

Definition 2.2. Let f , r and f1, . . . , fl be polynomials in Fq[x1, . . . , xk] with fi 6= 0

for 1 ≤ i ≤ l and let F = {f1, . . . , fl}. We say that f reduces to r modulo F , denoted

by

f F−→+ r,

if and only if there exist a sequence of indices i1, i2, . . . , is ∈ {1, . . . , l} and a

sequence of polynomials r1, . . . , rs−1 ∈ Fq[x1, . . . , xk] such that

f
fi1−→ r1

fi2−→ r2
fi3−→ · · ·

fis−1−→ rs−1
fis−→ r.
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Definition 2.3. A polynomial r is called reduced with respect to a set of nonzero

polynomials F = {f1, . . . , fl} if either r = 0 or no monomial that appears in r is

divisible by some lm(fi) where 1 ≤ i ≤ l.

Definition 2.4. A set of nonzero polynomials G = {g1, . . . , gl} contained in an

ideal I is called a Gröbner basis for I if and only if for each nonzero polynomial

f ∈ I there exists some i, where 1 ≤ i ≤ l, such that lm(gi) divides lm(f).

Theorem 2.5. Let I be a nonzero ideal of Fq[x1, . . . , xk]. The following statements

are equivalent for a set of nonzero polynomials G = {g1, . . . , gl} ⊆ I.

(i) G is a Gröbner basis for I.

(ii) f ∈ I if and only if f G−→+ 0.

(iii) ∆(I) = {xα1
1 . . . xαk

k |For each i, 1 ≤ i ≤ l,we have lm(gi) - xα1
1 . . . xαk

k }.

Proof. (i) ⇒ (ii) Let f be a polynomial. Then there exists an r such that f G−→+ r,

where r is reduced with respect to G. Thus, f − r ∈ 〈G〉 ⊆ I. Hence, f ∈ I if and

only if r ∈ I. Clearly, if r = 0 (i.e. f G−→+ 0) then f ∈ I. Conversely, suppose

f ∈ I. Then r ∈ I and by (i), there exists gi ∈ G such that lm(gi)|lm(r). However,

since r is reduced with respect to G, we must have r = 0.

(ii) ⇒ (iii) Put

A = {xα1
1 . . . xαk

k |For each i, 1 ≤ i ≤ l, we have lm(gi) - xα1
1 . . . xαk

k }.

Since {g1, . . . , gl} ⊆ I, we have ∆(I) ⊆ A. Suppose xα1
1 . . . xαk

k /∈ ∆(I). Then, there

exists a polynomial f ∈ I such that lm(f) = xα1
1 . . . xαk

k . By (ii), f reduces to

0 modulo G. Therefore, there exists gi ∈ G such that lm(gi)|xα1
1 . . . xαk

k . Hence,

xα1
1 . . . xαk

k /∈ A.

(iii) ⇒ (i) Suppose f ∈ I. Then we have lm(f) /∈ ∆(I). By (iii), there exists

gi ∈ G such that lm(gi)|lm(f). 2
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Lemma 2.6. Let G = {g1, . . . , gl} be a Gröbner basis for I ⊆ Fq[x1, . . . , xk]. Then

for all f ∈ Fq[x1, . . . , xk] the reduction of f with respect to G is unique.

Proof. Suppose f G−→+ r1 and f G−→+ r2 with r1 and r2 reduced with respect to

G. Note that f − r1 ∈ I and f − r2 ∈ I. Therefore, r1 − r2 ∈ I. Since r1 − r2 is

reduced with respect to G, we must have r1 − r2 = 0. 2

Remark 2.7. Let I be an ideal in Fq[x1, . . . , xk]. Let G be a Gröbner basis for Iq.

Let f be a polynomial in Fq[x1, . . . , xk]. Suppose f /∈ Iq and let c1xβ1 + · · ·+ csxβs

(where xβs <t · · · <t xβ1) be the unique reduction of f with respect to G. Then

xβ1 , . . . , xβs are in ∆(Iq). Suppose xβ1 = hr, the r-th element in the H-sequence

(cf. Definition 1.8). Then, f̄ ∈ L(r) \ L(r − 1).

Indeed, since f + Iq = c1xβ1 + · · · + csxβs + Iq, we have f ∈ L(r). Assume

f ∈ L(r − 1). Then f + Iq =
∑r−1

i=1 kihi + Iq where ki ∈ Fq for 1 ≤ i ≤ r− 1. Thus,

c1xβ1 + Iq =
r−1
∑

i=1

kihi − (c2xβ2 + · · ·+ csxβs) + Iq

implies that hr ∈ L(r − 1), which is a contradiction.

Corollary 2.8. Let hi, hj ∈ H and suppose hi,j /∈ Iq. Reduce hi,j with respect to

a Gröbner basis G for Iq. Let hr be the leading monomial of the reduction. Then

hi,j ∼ hr if and only if wt(hi,j) = wt(hr).

Note that Remark 2.7 implies that hi,j can only be consistent with the leading

monomial of its reduction with respect to the Gröbner basis G. Also, there is a

discrepancy for the case when hi,j ∈ Iq. In this case the reduction of hi,j with

respect to G is 0. Clearly, hi,j cannot be consistent with any hr. However, when

we examine the Fermat surfaces in Section 2.4, this case will not play a role.
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Definition 2.9. Let f and g be nonzero polynomials in Fq[x1, . . . , xk]. Put L =

lcm(lm(f), lm(g)). The S-polynomial of f and g, denoted by S(f, g), is defined as

S(f, g) =
L

lt(f)
f − L

lt(g)
g.

These S-polynomials play a vital role in the computation of a Gröbner basis.

More specifically, we are interested in the reduction of S-polynomials of any two

polynomials in the Gröbner basis as demonstrated by Buchberger’s Criterion [1].

Theorem 2.10. (Buchberger’s Criterion) Let G = {g1, . . . , gl} be a set of nonzero

polynomials in Fq[x1, . . . , xk]. Then G is a Gröbner basis for the ideal I = 〈g1, . . . , gl〉

if and only if for all i 6= j, we have S(gi, gj)
G−→+ 0.

Proof. See [1]. 2

From this Criterion we have a procedure, known as Buchberger’s Algorithm, for

computing a Gröbner basis. We can begin with the initial generators of our ideal I,

say f1, . . . , fl, and determine the S-polynomial of any two generators. Then reduce

the S-polynomial with respect to the set of generators. If the reduction is nonzero,

then add it to your set of generators for I.

Repeat the process of computing reductions of S-polynomials of pairs of gen-

erators from this “growing” set of generators. Eventually, after adding enough

reductions to your generator set all S-polynomials of pairs of generators will re-

duce to zero with respect to the final set of generators (cf. [1]). This set will be a

Gröbner basis for the ideal I. The algorithm is shown below.

As an easy consequence of Definition 2.4, we have

Lemma 2.11. Suppose G = {g1, . . . , gl} is a Gröbner basis for the ideal I. If

lm(g2) divides lm(g1), then {g2, . . . , gl} is also a Gröbner basis for I.

Proof. See [1]. 2
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Buchberger’s Algorithm

INPUT: F = {f1, . . . , fl} ⊆ Fq[x1, . . . , xk] with fi 6= 0 for 1 ≤ i ≤ l

OUTPUT: G = {g1, . . . , gs}, a Gröbner basis for 〈f1, . . . , fl〉

INITIALIZATION: G := F,G := {{fi, fj}|fi 6= fj ∈ G}

WHILE G 6= ∅ DO

Choose any {f, g} ∈ G

G := G \ {{f, g}}

S(f, g) G−→ r, where r is reduced with respect to G.

IF r 6= 0 THEN

G := G ∪ {{u, r}| for all u ∈ G}.

G := G ∪ {r}

Definition 2.12. A Gröbner basis G = {g1, . . . , gl} is called a reduced Gröbner

basis if, for all i, lm(gi) = lt(gi) and g is reduced with respect to G \ {gi}, i.e. no

term that appears in gi is divisible by lm(gj) for some j 6= i.

2.2 Higher-Dimensional Varieties

We now direct our attention to codes defined over higher-dimensional varieties of

the form V (Iq) where Iq ⊆ Fq[x1, . . . , xk] for some k ≥ 3. In this section we will

consider principal ideals I = 〈g〉 with the following properties:

(i) g(x1, . . . , xk) = xd
1 + f(x2, . . . , xk)

(ii) lm(g) = xd
1

(iii) d|(q − 1)

Define n := (q − 1)/d. Following Buchberger’s Algorithm, we will construct a

Gröbner basis for the ideal Iq = 〈g, f1, . . . , fk〉 where fi := xq
i − xi for 1 ≤ i ≤ k.
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Consider the S-polynomials. We have separated all possible S-polynomials into 12

various types.

(1)
S(g, f1) =

xq
1

xd
1
g − xq

1

xq
1
f1 = xq−d

1 g − f1 = xq
1 + xq−d

1 f(x2, . . . , xk)− xq
1 + x1

= xq−d
1 f(x2, . . . , xk) + x1

which can be reduced successively by g an additional n− 1 times to obtain

S(g, f1)
g−→+ x1((−1)n+1[f(x2, . . . , xk)]n + 1).

This can be further reduced, if necessary, by some of the fi. If there exists an

exponent ei ≥ q of xi in the expansion of [f(x2, . . . , xk)]n, then reduce the previous

reduction by fi. In essence, such a reduction replaces xq
i with xi whenever possible.

(2)
For i ≥ 2, S(g, fi) =

xd
1x

q
i

xd
1

g − xd
1x

q
i

xq
i

fi = xq
i g − xd

1fi

= xd
1x

q
i + xq

i f − xd
1x

q
i + xd

1xi = xq
i f + xd

1xi,

which can be reduced by both fi and g.

S(g, fi)
fi−→ xq

i f + xd
1xi− f(fi) = xd

1xi + xif
g−→ xd

1xi + xif − xig = xif − xif = 0.

(3)
S(fi, fj) =

xq
i x

q
j

xq
i

fi −
xq

i x
q
j

xq
j

fj = xq
jfi − xq

i fj

= xq
i x

q
j − xix

q
j − xq

i x
q
j + xq

i xj = xq
i xj − xix

q
j ,

which can be reduced by both fi and fj.

S(fi, fj)
fi−→ xq

i xj−xix
q
j−xjfi = xixj−xix

q
j

fj−→ xixj−xix
q
j+xifj = xixj−xixj = 0.

Note that through (1), (2), and (3), we have examined all the S-polynomials

determined by the pairs of the k + 1 initial generators of Iq. At this point, we now
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have G = {g, f1, . . . , fk, S∗(g, f1)} where S∗(g, f1) is the reduction of S(g, f1) by

G \ {S∗(g, f1)} discussed in (1).

Let hα denote an arbitrary polynomial in the variables x2, . . . , xk such that

x1hα ∈ G. Let hβ denote an arbitrary polynomial in the variables x2, . . . , xk such

that hβ ∈ G. We may assume that lm(hα) = lt(hα) and lm(hβ) = lt(hβ). These

polynomials are defined to be “in progress,” of course. Right now, we have one of

type hα, namely S∗(g, f1), and k − 1 of type hβ ∈ G. We now must consider the

following S-polynomials.

(4)
S(g, x1hα) =

xd
1lt(hα)

xd
1

g − xd
1lt(hα)

x1lt(hα)
x1hα = lt(hα)g − xd

1hα

= xd
1lt(hα) + lt(hα)f − xd

1hα = lt(hα)f − xd
1[hα − lt(hα)],

which can be reduced by g.

S(g, x1hα)
g−→ lt(hα)f − xd

1[hα − lt(hα)] + g[hα − lt(hα)]

= lt(hα)f + f [hα − lt(hα)] = fhα.

(5)
S(f1, x1hα) =

xq
1lt(hα)

xq
1

f1 −
xq

1lt(hα)
x1lt(hα)

x1hα = lt(hα)f1 − xq
1hα

= xq
1lt(hα)− x1lt(hα)− xq

1hα = −x1lt(hα)− xq
1[hα − lt(hα)],

which can be reduced by both f1 and x1hα.

S(f1, x1hα)
f1−→− x1lt(hα)− xq

1[hα − lt(hα)] + f1[hα − lt(hα)]

= − x1lt(hα)− x1[hα − lt(hα)] = −x1hα
x1hα−→ −x1hα + x1hα = 0.

(6) For i ≥ 2, S(fi, x1hα) =
lcm(xq

i , x1lt(hα))
xq

i
fi−

lcm(xq
i , x1lt(hα))

x1lt(hα)
x1hα = x1h′

where h′ is a polynomial in the variables x2, . . . , xk. If x1h′ is reducible by G, then

the reduction must be of the form x1 times a polynomial independent of x1 (i.e.,

a polynomial in Fq[x2, . . . , xk]).
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(7)
S(g, hβ) =

xd
1lt(hβ)

xd
1

g − xd
1lt(hβ)
lt(hβ)

hβ = lt(hβ)g − xd
1hβ

= xd
1lt(hβ) + lt(hβ)f − xd

1hβ = lt(hβ)f − xd
1[hβ − lt(hβ)],

which can be reduced by both g and hβ.

S(g, hβ)
g−→lt(hβ)f − xd

1[hβ − lt(hβ)] + g[hβ − lt(hβ)] = lt(hβ)f + f [hβ − lt(hβ)]

= fhβ
hβ−→ fhβ − fhβ = 0.

(8)
S(f1, hβ) =

xq
1lt(hβ)

xq
1

f1 −
xq

1lt(hβ)
lt(hβ)

hβ = lt(hβ)f1 − xq
1hβ

= xq
1lt(hβ)− x1lt(hβ)− xq

1(hβ) = −x1lt(hβ)− xq
1[hβ − lt(hβ)],

which can be reduced by both f1 and hβ.

S(f1, hβ)
f1−→− x1lt(hβ)− xq

1[hβ − lt(hβ)] + f1[hβ − lt(hβ)]

=− x1lt(hβ)− x1[hβ − lt(hβ)] = −x1hβ
hβ−→ −x1hβ + x1hβ = 0.

(9) For i ≥ 2, S(fi, hβ) =
lcm(xq

i , lt(hβ))
xq

i
fi −

lcm(xq
i , lt(hβ))

lt(hβ)
hβ = hγ

where hγ is a polynomial in the variables x2, . . . , xk. If this is reducible by G, then

the reduction must be independent of x1.

(10) S(x1hα, hβ) =
x1lcm(lt(hα), lt(hβ))

x1lt(hα)
x1hα −

x1lcm(lt(hα), lt(hβ))
lt(hβ)

hβ = x1hδ

where hδ is a polynomial in the variables x2, . . . , xk. If x1hδ is reducible by G, then

the reduction must be of the form x1 times a polynomial independent of x1.

Finally, let hα1 and hα2 denote any two polynomials in the variables x2, . . . , xk

such that x1hα1 , x1hα2 ∈ G. Similarly, let hβ1 and hβ2 denote any two polynomials

in the variables x2, . . . , xk such that hβ1 , hβ2 ∈ G.
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(11)

S(x1hα1 , x1hα2) =
lcm(lt(hα1), lt(hα2))

lt(hα1)
x1hα1 −

lcm(lt(hα1), lt(hα2))
lt(hα2)

x1hα2 = x1hε

where hε is a polynomial in the variables x2, . . . , xk. If x1hε is reducible by G, then

the reduction must be of the form x1 times a polynomial independent of x1.

(12) S(hβ1 , hβ2) =
lcm(lt(hβ1), lt(hβ2))

lt(hβ1)
hβ1 −

lcm(lt(hβ1), lt(hβ2))
lt(hβ2)

hβ2 = hζ

where hζ is a polynomial in the variables x2, . . . , xk. If this is reducible by G, then

the reduction must be independent of x1.

Since the code length of C⊥(I, L) is equal to the the number of rational points

of V (Iq), we need to work with varieties with many rational points to obtain long

codes. Observe that in Buchberger’s Algorithm, each time an S-polynomial fails

to reduce to zero, we append a new polynomial to G. When this occurs, we are

informed that any multiple of the leading monomial of the polynomial does not

appear in ∆(Iq). Hence, in order to make |∆(Iq)| relatively large, we would like a

large number of these S-polynomials to reduce to zero.

Consider the “first” S-polynomial represented in (4); namely, S(g, S∗(g, f1)).

When does this reduce to zero? Note that S(g, S∗(g, f1)) reduces to zero if and

only if

f((−1)n+1fn + 1) = (−1)n+1fn+1 + f F−→+ 0.

Lemma 2.13. Suppose n is a divisor of q − 1 that satisfies n + 1 = (char Fq)m

for some integer m. Then there exists a subfield of Fq with n + 1 elements.

Proof. Suppose there exist positive integers d and n such that dn = q − 1 and

n+1 = (char Fq)m for some integer m. Express q = (char Fq)t where t is a positive

24



integer. Then d = (q − 1)/n implies that

d =
(char Fq)t − 1
(char Fq)m − 1

.

Since d is an integer, it follows that m|t. Therefore, there exists a subfield of Fq

with n + 1 elements [6]. 2

Let Fn+1 denote that subfield. Suppose f = c1m1 + · · ·+ csms where ci ∈ Fq and

mi ∈ T k for 1 ≤ i ≤ s. Note that

(−1)n+1 =















−1 if char Fq 6= 2

1 if char Fq = 2.

So we always have (−1)n+1 = −1 in Fq. Therefore,

(−1)n+1fn+1 + f = −fn+1 + f = −(c1m1 + · · ·+ csms)n+1 + (c1m1 + · · ·+ csms)

= −((c1m1)n+1 + · · ·+ (csms)n+1) + c1m1 + · · ·+ csms

= (c1m1)− (c1m1)n+1 + · · ·+ (csms)− (csms)n+1.

When does this reduce to zero by F? To answer this question, we will use the

following concept.

Definition 2.14. [8] A polynomial f ∈ Fq[x2, . . . , xk] is called an (Fk−1
q ,Fn+1)-

polynomial if the image of f when restricted to Fk−1
q is contained in Fn+1.

In fact, given this condition, we will show next that all S-polynomials that are

independent of x1 will reduce to zero. This leaves us with a Gröbner basis of the

form

{x1(g1), . . . , x1(gs), g, f2, . . . , fk}

for the ideal Iq.

Theorem 2.15. Let g(x1, . . . , xk) := xd
1 + f(x2, . . . , xk) ∈ Fq[x1, . . . , xk], where

d|(q − 1), n := q−1
d , n + 1 = (char Fq)m for some positive integer m, f is an
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(Fk−1
q ,Fn+1)-polynomial, and lt(g) = xd

1. Put I = 〈g〉 ⊆ Fq[x1, . . . , xk] and let

J = 〈fn − 1〉 ⊆ Fq[x2, . . . , xk]. If {g1, . . . , gs, f2, . . . , fk} is a Gröbner basis for

Jq, where fi := xq
i − xi for 2 ≤ i ≤ k, then {x1(g1), . . . , x1(gs), g, f2, . . . , fk} is a

Gröbner basis for Iq.

Proof. Put I ′ := 〈x1(g1), . . . , x1(gs), g, f2, . . . , fk〉. We need to show I ′ ⊆ Iq. It

suffices to show that x1(gi) ∈ Iq for all i such that 1 ≤ i ≤ s. Since gi ∈ Jq,

then gi =
∑k

j=2 pjfj + p1[fn− 1] for some p1, p2, . . . , pk ∈ Fq[x2, . . . , xk]. Therefore,

x1(gi) =
∑k

j=2 x1pjfj + p1x1[fn − 1]. Since fj ∈ Iq for 2 ≤ j ≤ k, we have that
∑k

j=2 x1pjfj is in Iq. Also, x1[fn − 1] is the negative of the reduction of S(g, f1)

represented in (1). Hence, x1(gi) ∈ Iq. Thus, I ′ ⊆ Iq.

Put K := 〈f〉 ⊆ Fq[x2, . . . , xk]. Since Iq, Jq, and Kq are radical ideals, put

a := number of points of V (Iq) = |∆(Iq)|,

b := number of points of V (Jq) = |∆(Jq)|,

c := number of points of V (Kq) = |∆(Kq)|.

Notice that

b = |{(c2, . . . , ck) ∈ Fk−1
q |f(c2, . . . , ck) ∈ Fn+1 \ {0}}|

and

c = |{(c2, . . . , ck) ∈ Fk−1
q |f(c2, . . . , ck) = 0}|.

For c1 ∈ Fq we have that cd
1 ∈ Fn+1 since (cd

1)
n+1 = (c1)q−1+d = cd

1. For each

nonzero element y ∈ Fn+1 there exists d-many choices for c1 ∈ Fq such that cd
1 = y.

Therefore, from the defining polynomial g(x1, . . . , xk), we have a = db + c. Note

that ∆(I ′) ⊆ {xα1
1 . . . xαk

k |0 ≤ α1 < d, 0 ≤ αi < q for 2 ≤ i ≤ k, and either α1 = 0

or xα2
2 . . . xαk

k ∈ ∆(Jq)}. Therefore,

|∆(I ′)| ≤ qk−1 + (d− 1)|∆(Jq)| = qk−1 + (d− 1)b.
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Since I ′ ⊆ Iq, then ∆(Iq) ⊆ ∆(I ′). Thus, a = |∆(Iq)| ≤ |∆(I ′)|.

Assume that |∆(Iq)| < |∆(I ′)|. Hence,

a = db + c < qk−1 + (d− 1)b,

which implies that b + c < qk−1. However,

b + c = |{(c2, . . . , ck) ∈ Fk−1
q |f(c2, . . . , ck) ∈ Fn+1 \ {0}}|

+ |{(c2, . . . , ck) ∈ Fk−1
q |f(c2, . . . , ck) = 0}|

= |{(c2, . . . , ck) ∈ Fk−1
q |f(c2, . . . , ck) ∈ Fn+1}| = qk−1

since f is an (Fk−1
q ,Fn+1)-polynomial, which is a contradiction. Therefore, we have

|∆(Iq)| = |∆(I ′)|. Thus, ∆(Iq) = ∆(I ′) = {xα1
1 . . . xαk

k |0 ≤ α1 < d, 0 ≤ αi < q for

2 ≤ i ≤ k, and either α1 = 0 or xα2
2 . . . xαk

k ∈ ∆(Jq)}. By Theorem 2.5, we have

that {x1(g1), . . . , x1(gs), g, f2, . . . , fk} is a Gröbner basis for Iq. 2

2.3 Fermat Varieties

Specifically, consider the Fermat varieties defined by the ideal

I = 〈xd
1 + xd

2 + · · ·+ xd
k + b〉 ⊆ Fq[x1, . . . , xk]

where nd = q − 1, n + 1 = (char Fq)m for some positive integer m, and b ∈ Fn+1,

which is a subfield of Fq by Lemma 2.13. The following table displays all varieties

of this type for q ≤ 729 = 36. Note that this includes all affine Hermitian varieties.

This is the case when q = (d− 1)2.

We now wish to determine the exact number of solutions in Fk
q for the equation

xd
1 + xd

2 + · · · + xd
k + b = 0 satisfying the above conditions. This has been done

previously by [11] and [12]. However, the argument is usually done using character

sums. We will provide a simpler explanation.
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Fermat Varieties Table

q d n q d n q d n

4 3 1 64 63 1 289 18 16

8 7 1 81 10 8 343 57 6

9 4 2 81 40 2 361 20 18

16 5 3 121 12 10 512 73 7

16 15 1 125 31 4 512 511 1

25 6 4 128 127 1 529 24 22

27 13 2 169 14 12 625 26 24

32 31 1 243 121 2 625 156 4

49 8 6 256 17 15 729 28 26

64 9 7 256 85 3 729 91 8

64 21 3 256 255 1 729 364 2

Note that cd ∈ Fn+1 for all c ∈ Fq since (cd)n+1 = (c)q−1+d = cd. Therefore,

xd
1 + xd

2 + · · · + xd
k + b is an (Fk−1

q ,Fn+1)-polynomial. Put yj := xd
j for 1 ≤ j ≤ k.

Consider the solutions in Fk
n+1 to the equation y1 + · · ·+ yk + b = 0. Assume that

exactly i of the yj are nonzero. For 1 ≤ i ≤ k, define zi,b to be the number of ways

to choose i elements a1, . . . , ai ∈ Fn+1 \ {0} such that a1 + · · · + ai + b = 0. For

i = 0, we set

z0,b =















1 if b = 0

0 otherwise.

For each nonzero yj ∈ Fn+1 there exists d-many xj ∈ Fq such that xd
j = yj. Of

course, if yj = 0 then xj = 0. Thus, the number of solutions to xd
1 + · · ·+xd

k +b = 0

in which there are exactly i nonzero xj is
(k

i

)

zi,bdi. Hence, the number of solutions
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over Fk
q to xd

1 + xd
2 + · · · + xd

k + b = 0 is
∑k

i=0

(k
i

)

zi,bdi. Now, we will examine the

two cases of zi,b more explicitly beginning with a recursive formula.

Lemma 2.16. [3] For i ≥ 2, zi,b = ni−1 − zi−1,b.

Proof. There are ni−1 ways to choose elements a1, . . . , ai−1 from Fn+1\{0}. Exactly

zi−1,b of these choices have the property that a1+· · ·+ai−1+b = 0. However, for each

of these zi−1,b choices there does not exist a nonzero ai such that a1+· · ·+ai+b = 0.

On the other hand, if a1 + · · · + ai−1 + b 6= 0, then there exists a unique nonzero

ai such that a1 + · · ·+ ai + b = 0. 2

Proposition 2.17. (i) The number of solutions in Fk
q to xd

1 +xd
2 + · · ·+xd

k = 0 is

qk + n(1− d)k

n + 1
.

(ii) The number of solutions over Fk
q to xd

1 + xd
2 + · · ·+ xd

k + b = 0 when b 6= 0 is

qk − (1− d)k

n + 1
.

Proof. (i) b = 0. Note that z0,0 = 1 and z1,0 = 0. Therefore, by expansion of the

recursive formula, we obtain that for i ≥ 2,

zi,0 = ni−1 − ni−2 + · · ·+ (−1)in =
i−2
∑

l=0

(−1)lni−1−l.

Note that zi,0 is also expressed as a geometric series, so

zi,0 =
(−1)in[1− (−n)i−1]

1 + n
=

ni + (−1)in
n + 1

for i ≥ 0. Hence, the number of solutions is

k
∑

i=0

(

k
i

)

di n
i + (−1)in

n + 1
=

1
n + 1

k
∑

i=0

(

k
i

)

(dn)i +
n

n + 1

k
∑

i=0

(

k
i

)

(−d)i

=
1

n + 1

k
∑

i=0

(

k
i

)

(q − 1)i +
n

n + 1

k
∑

i=0

(

k
i

)

(−d)i

=
1

n + 1
(qk) +

n
n + 1

(1− d)k =
qk + n(1− d)k

n + 1
.
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(ii) b 6= 0. Note that z0,b = 0 and z1,b = 1. Therefore, by expansion of the

recursive formula, we obtain that for i ≥ 1,

zi,b = ni−1 − ni−2 + · · ·+ (−1)in + (−1)i+1 =
i−1
∑

l=0

(−1)lni−1−l.

Note that zi,b is expressed as a geometric series, so

zi,b =
(−1)i+1[1− (−n)i]

1 + n
=

ni + (−1)i+1

n + 1

for i ≥ 0. Hence, the number of solutions is

k
∑

i=0

(

k
i

)

di n
i + (−1)i+1

n + 1
=

1
n + 1

k
∑

i=0

(

k
i

)

(dn)i +
1

n + 1

k
∑

i=0

(

k
i

)

(−1)i+1di

=
1

n + 1

k
∑

i=0

(

k
i

)

(q − 1)i − 1
n + 1

k
∑

i=0

(

k
i

)

(−d)i

=
1

n + 1
(qk)− 1

n + 1
(1− d)k =

qk − (1− d)k

n + 1
.2

Throughout the rest of this chapter, we will choose to assign the variables equal

weight. Thus we may assume wt(x1) = wt(x2) = · · · = wt(xk) = 1. Note that our

monomial ordering is then simply the degree lexicographic ordering.

Generally, it is difficult to describe the H-sequence for Fermat varieties of dimen-

sion k. However, we can obtain a description of Nr under certain circumstances.

In the next section we will show that the hypothesis in the following theorem is

valid in the case of Fermat surfaces.

Theorem 2.18. Let V (Iq) be an affine variety defined by I ⊆ Fq[x1, . . . , xk] where

k ≥ 3. Suppose that wt(xi) = wt(xj) for 1 ≤ i, j ≤ k. For each hi, hj, hr ∈ H, if

hi,j = xp1
1 xp2

2 . . . xpk
k ∼ hr = xr1

1 xr2
2 . . . xrk

k implies that pn ≤ rn for 3 ≤ n ≤ k, then

Nr =
∏k

n=1(rn + 1).

Proof. By Proposition 1.21, we know that Nr ≥
∏k

n=1(rn+1). Assume equality does

not hold. Then there exist elements hi = xi1
1 . . . xik

k , hj = xj1
1 . . . xjk

k ∈ H such that
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hihj = hi,j is a well-behaving term consistent with hr but hihj 6= hr. By Lemma

1.20, we may assume that hi and hj are non-divisors of hr. This implies that there

exist α and β such that iα > rα and jβ > rβ. Since in + jn ≤ rn for 3 ≤ n ≤ k

(by our hypothesis) and hr <t hihj (by Corollary 1.15), we have α, β ∈ {1, 2} and

i1 + j1 ≥ r1.

We will show that hi,j cannot be well-behaving. We will find hu = xu1
1 . . . xuk

k

and hv = xv1
1 . . . xvk

k such that hu <t hi, hv <t hj, and huhv = hr.

Put u1 := min{i1, r1}. For 2 ≤ n ≤ k put

un := min{rn,
k

∑

l=1

il −
n−1
∑

l=1

ul}.

Put vn := rn − un for 1 ≤ n ≤ k. Now, since wt(hi) + wt(hj) = wt(hr), we have

that
k

∑

n=1

in +
k

∑

n=1

jn =
k

∑

n=1

rn.

Clearly,
∑k

n=1 un ≤
∑k

n=1 in.

Assume
∑k

n=1 un <
∑k

n=1 in. Then, for all n such that 2 ≤ n ≤ k,

un = rn <
k

∑

l=1

il −
n−1
∑

l=1

ul

(otherwise,
∑k

l=1 il =
∑n

l=1 ul ≤
∑k

l=1 ul, which is a contradiction). Furthermore,

u1 = i1 < r1 (otherwise,
∑k

n=1 un =
∑k

n=1 rn <
∑k

n=1 in, which is a contradiction).

Therefore,

i1 +
k

∑

n=2

rn =
k

∑

n=1

un <
k

∑

n=1

in =
k

∑

n=1

rn −
k

∑

n=1

jn

which implies that i1 + j1 ≤ i1 +
∑k

n=1 jn < r1, which is a contradiction. Thus,
∑k

n=1 un =
∑k

n=1 in.

By construction,

k
∑

n=1

vn =
k

∑

n=1

rn −
k

∑

n=1

un =
k

∑

n=1

rn −
k

∑

n=1

in =
k

∑

n=1

jn.
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Let hu = xu1
1 . . . xuk

k and hv = xv1
1 . . . xvk

k . So, wt(hu) = wt(hi) and wt(hv) = wt(hj).

Note that huhv = hr. Therefore, hu, hv ∈ H by Remark 1.9. We claim that hu <t hi

and hv <t hj.

Suppose u1 = r1 < i1. Then we have hu <t hi. Also, u1 = r1 implies that

v1 = r1 − u1 = 0. Hence, if j1 > 0 then hv <t hj. If j1 = 0, then since hj - hr, we

have r2 < j2. This implies that v2 < j2 and hv <t hj.

Suppose u1 = i1 ≤ r1. Since hi - hr, we have r2 < i2. Thus, u2 < i2 and hu <t hi.

Also, u1 = i1 and i1 + j1 ≥ r1 imply that v1 ≤ j1. If i1 + j1 > r1, then v1 < j1 and

so hv <t hj. If i1 + j1 = r1, then since hj - hr, we have r2 < j2. This implies that

v2 < j2 and hv <t hj.

Thus, in each of the cases we have hu,v = hr with hu <t hi and hv <t hj. Hence,

hi,j is not a well-behaving term, which is a contradiction. 2

2.4 Fermat Surfaces

Theorem 2.19. Consider the affine variety V (Iq) defined by a Fermat surface

where I = 〈xd
1 + xd

2 + xd
3 + b〉 ⊆ Fq[x1, x2, x3] and d satisfies 1 < d < q. The set of

leading terms of the reduced Gröbner basis for Iq is {xd
1, x

q
2, x

q
3, x1x

q−1
2 , x1x

q−d
2 xd

3} if

and only if d|(q− 1), n+ 1 = (char Fq)m for some integer m where n := (q− 1)/d,

and b ∈ Fn+1 \ {0}.

Proof. (⇐=) We apply Buchberger’s Algorithm and carefully examine two of the

S-polynomials. First,

S(g, f1)
g−→ x1((−1)n+1fn + 1) = x1(−fn + 1) = x1(−(xd

2 + xd
3 + b)n + 1),

whose leading term is −x1x
q−1
2 . Second,

S(f2, S∗(g, f1)) = x1x
q
2 − x1x2 + x1x2(−(xd

2 + xd
3 + b)n + 1),
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which has leading term −x1x
d(n−1)+1
2 xd

3 = −x1x
q−d
2 xd

3 since the term x1x
q
2 is can-

celed. Currently in the algorithm we have G =

{xd
1 +xd

2 +xd
3 + b, xq

2−x2, x
q
3−x3, x1((xd

2 +xd
3 + b)n−1), x1x2(xd

2 +xd
3 + b)n−x1x

q
2}.

The set of leading monomials of G is

{xd
1, x

q
2, x

q
3, x1x

q−1
2 , x1x

q−d
2 xd

3}.

All other S-polynomials must reduce to zero since the set of leading monomials

implies that ∆(Iq) ⊆ A ∪B ∪ C, where

A = {xβ
2x

γ
3 |0 ≤ β < q, 0 ≤ γ < q}

B = {xα
1xβ

2x
γ
3 |1 ≤ α < d, 0 ≤ β < q − d, 0 ≤ γ < q}

C = {xα
1 xβ

2x
γ
3 |1 ≤ α < d, q − d ≤ β < q − 1, 0 ≤ γ < d}.

Thus,

|∆(Iq)| ≤ q2 + (d− 1)(q − d)q + (d− 1)(d− 1)d

= q2 + (d− 1)q2 − dq(d− 1) + d(d− 1)2 = dq2 + dq(1− d) + d(1− d)2

= d(q2 + q(1− d) + (1− d)2) = d
q3 − (1− d)3

q − (1− d)
=

q3 − (1− d)3

q−1+d
d

=
q3 − (1− d)3

q−1
d + 1

=
q3 − (1− d)3

n + 1
,

which is the actual number of points of V (Iq) by Proposition 2.17.

(=⇒) Assume d - (q−1). Express (q−1) = nd+r where n ≥ 1 and 1 ≤ r ≤ d−1.

Suppose r 6= d− 1. Then in the ring Fq[x1, x2, x3]/Iq we have

x1 + Iq = xq
1 + Iq = xr+1

1 (xd
1)

n + Iq = xr+1
1 (−1)n(xd

2 + xd
3 + b)n + Iq.

Thus, the polynomial f = xr+1
1 (−1)n(xd

2 +xd
3 + b)n−x1 ∈ Iq and lm(f) = xr+1

1 xdn
2 .

However, since r + 1 < d and dn < q − 1, we know that xr+1
1 xdn

2 is not a multiple
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of any of the leading terms of the Gröbner basis, which is a contradiction. Suppose

r = d− 1, then q = (n + 1)d. Note that n + 1 > 1 implies that n + 1 = (char Fq)m

for some m > 0. Therefore,

x1 + Iq = xq
1 + Iq = (xd

1)
n+1 + Iq = (−1)n+1(xd

2 + xd
3 + b)n+1 + Iq

= (−1)n+1(xd(n+1)
2 + xd(n+1)

3 + bn+1) + Iq = (−1)n+1(xq
2 + xq

3 + bn+1) + Iq

= (−1)n+1(x2 + x3 + bn+1) + Iq.

Thus, the polynomial f = x1 − (−1)n+1(x2 + x3 + bn+1) ∈ Iq and lm(f) = x1.

However, x1 is not a multiple of any of the leading terms of the Gröbner basis,

which is a contradiction. Hence, d|(q − 1).

Assume n + 1 = st where s =(char Fq)k for some k ≥ 0 and (char Fq) - t with t

an integer greater than 1. In the ring Fq[x1, x2, x3]/Iq we have that

xd
1 + Iq = xq−1+d

1 + Iq = xnd+d
1 + Iq = (xd

1)
n+1 + Iq = (−1)n+1(xd

2 + xd
3 + b)n+1 + Iq

= (−1)n+1((xd
2 + xd

3 + b)n+1 + (xd
2 − xq−1+d

2 ) + (xd
3 − xq−1+d

3 )) + Iq

= (−1)n+1((xd
2 + xd

3 + b)st + xd
2 − xq−1+d

2 + xd
3 − xq−1+d

3 ) + Iq

= (−1)n+1((xds
2 + xds

3 + bs)t + xd
2 − xq−1+d

2 + xd
3 − xq−1+d

3 ) + Iq

Thus, the polynomial

f = (−1)n+1((xds
2 + xds

3 + bs)t + xd
2 − xq−1+d

2 + xd
3 − xq−1+d

3 )− xd
1 ∈ Iq.

Since

dst = d(n + 1) = dn + d = q − 1 + d,

we have that xdst
2 − xq−1+d

2 = 0 and lm(f) = xds(t−1)
2 xds

3 and its coefficient is

(−1)n+1t. Note that

ds(t− 1) = d(st− s) = d(n + 1− s) ≤ dn = q − 1

34



and (−1)n+1t 6= 0 over Fq. Thus, xds(t−1)
2 xds

3 is not a multiple of any of the leading

terms of the Gröbner basis, which is a contradiction. Hence n+1 = (char Fq)m for

some integer m.

From the proof of (⇐=) we know that the leading terms imply that

|∆(Iq)| =
q3 − (1− d)3

n + 1
.

Therefore, by Proposition 2.17, b 6= 0. 2

Corollary 2.20. Let V (Iq) be the affine variety defined by a Fermat surface where

I = 〈xd
1 + xd

2 + xd
3 + b〉 ⊆ Fq[x1, x2, x3] where d|(q − 1), n + 1 = (char Fq)m for

some integer m where n := (q−1)/d, and b ∈ Fn+1 \{0}. A Gröbner basis for Iq is

{xd
1 +xd

2 +xd
3 + b, xq

2−x2, x
q
3−x3, x1((xd

2 +xd
3 + b)n−1), x1x2(xd

2 +xd
3 + b)n−x1x

q
2}.

Corollary 2.21. (i) For each polynomial gi of the Gröbner basis G in Corollary

2.20, if xα = xα1
1 xα2

2 xα3
3 is a monomial that appears in gi such that wt(xα) =

wt(lm(gi)), where lm(gi) = xβ1
1 xβ2

2 xβ3
3 , then β1 ≥ α1 and β1 + β2 ≥ α1 + α2.

(ii) Suppose f reduces to r modulo G. Also, suppose lm(f) = xβ1
1 xβ2

2 xβ3
3 and

lm(r) = xα1
1 xα2

2 xα3
3 . If wt(lm(f)) = wt(lm(r)) then β1 ≥ α1 and β1 +β2 ≥ α1 +α2.

Proof. This follows by inspection of the polynomials in the Gröbner basis in Corol-

lary 2.20. 2

For the remainder of this chapter we will assume that V (Iq) satisfies the con-

ditions stated in Corollary 2.20. We will now show that for each hr ∈ H, its

corresponding Nr is easy to determine.

Lemma 2.22. For hi = xi1
1 xi2

2 xi3
3 , hj = xj1

1 xj2
2 xj3

3 , and hr = xr1
1 xr2

2 xr3
3 ∈ H, if

hi,j = xp1
1 xp2

2 xp3
3 is consistent with hr, then p3 ≤ r3.

Proof. First we will show that for Fermat surfaces hi,j /∈ Iq. Indeed, if hi,j =

xp1
1 xp2

2 xp3
3 ∈ Iq, then xq

1x
q
2x

q
3 ∈ Iq. It follows that x1x2x3 ∈ Iq. However, there does
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not exist a Gröbner basis polynomial whose leading term divides x1x2x3, which

is a contradiction. Now, by Remark 2.7, we have that hr is the leading monomial

of the reduction of hi,j with respect to the Gröbner basis. Also, hi,j ∼ hr implies

that wt(hi,j) = wt(hr). Therefore, Corollary 2.21 implies that p1 + p2 ≥ r1 + r2.

However, since hi,j and hr have the same total degree, we have p3 ≤ r3. 2

Proposition 2.23. For the Fermat surfaces of this section, we have that Nr =
∏3

i=1(ri + 1), the number of monomial divisors of hr.

Proof. This follows from Lemma 2.22 and Theorem 2.18. 2

Not only are we interested in the actual value of Nr, but in order to determine

the dimensions of our codes we need to know how many times that value occurs.

Put

St = |{hr ∈ H|Nr ≤ t}|.

The footprint of the ideal Iq can be expressed as ∆(Iq) = U \ (V ∪W ) where

U = {xα
1 xβ

2x
γ
3 |0 ≤ α < d, 0 ≤ β < q, 0 ≤ γ < q},

V = {xα
1 xq−1

2 xγ
3 |1 ≤ α < d, 0 ≤ γ < q},

W = {xα
1xβ

2x
γ
3 |1 ≤ α < d, q − d ≤ β ≤ q − 2, d ≤ γ < q}.

Since Nr is simply the number of monomial divisors of hr, we know from ∆(Iq)

that St = |Ut| − |Vt| − |Wt| where

Ut = {(α, β, γ)|αβγ ≤ t, 1 ≤ α ≤ d, 1 ≤ β ≤ q, 1 ≤ γ ≤ q}

Vt = {(α, γ)|αqγ ≤ t, 2 ≤ α ≤ d, 1 ≤ γ ≤ q}

Wt = {(α, β, γ)|αβγ ≤ t, 2 ≤ α ≤ d, q − d < β < q, d < γ ≤ q}.

However, if we restrict

t < 2(q − d + 1)(d + 1),
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then Ct = ∅. Hence,

St = |Ut| − |Vt|.

If we fix the value of the product βγ, call it x, then |{α|(α, β, γ) ∈ Ut}| =

min{d, bt/xc}. Hence,

|Ut| =
t

∑

x=1

ft(x)g(x)

where

ft(x) = min{d, bt/xc}

and

g(x) = |{(β, γ)|βγ = x, 1 ≤ β ≤ q, 1 ≤ γ ≤ q}|.

If we fix the value of the product αγ, call it y, then

|Vt| =
bt/qc
∑

y=2

h(y)

where

h(y) = |{(α, γ)|αγ = y, 2 ≤ α ≤ d, 1 ≤ γ ≤ q}|.

Thus, for t < 2(q − d + 1)(d + 1) we have

St =
t

∑

x=1

ft(x)g(x)−
bt/qc
∑

y=2

h(y).

For affine variety codes C⊥(I, L) of length q3−(1−d)3

n+1 where I = 〈xd
1+xd

2+xd
3+b〉 ⊆

Fq[x1, x2, x3], if we want a minimum distance lower bound of δ, then we put L =

span{h̄r|Nr < δ}. Hence, L has dimension Sδ−1. Thus, our code has dimension

q3 − (1− d)3

n + 1
− Sδ−1.

Example 2.24. Suppose you desire a code over F4 to have length 36 and minimum

distance at least 6. Consider the affine variety code C⊥(I, L) where the ideal I =
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〈x3
1 + x3

2 + x3
3 + 1〉 ⊆ F4[x1, x2, x3], put L = span{h̄r|Nr < 6}. We need to calculate

S5 =
∑5

x=1 f5(x)g(x) with f5(x) = min{3, b5/xc} and

g(x) = |{(β, γ)|βγ = x, 1 ≤ β ≤ 4, 1 ≤ γ ≤ 4}|.

Thus,

S5 = 3g(1) + 2g(2) + g(3) + g(4) + g(5) = 3 + 4 + 2 + 3 + 0 = 12.

Hence, C⊥(I, L) is a [36, 24,≥ 6]-code over F4, i.e. a code of length 36, dimension

24, and minimum distance at least 6. The actual minimum distance is 6 since

the columns of the parity check matrix H∗
r corresponding to the points P1 =

(1, α2, α2), P2 = (1, 1, α2), P3 = (α, 1, 1), P4 = (α, α, 1), P5 = (α2, α, α), and P6 =

(α2, α2, α), where α is a generator of the multiplicative group of F4, are linearly

dependent.

Example 2.25. Suppose you wish to obtain a code over F9 with length 252 and

minimum distance at least 12. Consider the affine variety code C⊥(I, L) where

I = 〈x4
1 + x4

2 + x4
3 + 1〉 ⊆ F9[x1, x2, x3], put L = span{h̄r|Nr < 12}. Now, S11 =

∑11
x=1 f11(x)g(x) with f11(x) = min{4, b11/xc} and

g(x) = |{(β, γ)|βγ = x, 1 ≤ β ≤ 9, 1 ≤ γ ≤ 9}|.

Therefore,

S11 = 4g(1) + 4g(2) + 3g(3) + 2g(4) + 2g(5) +
11

∑

x=6

g(x)

= 4 + 8 + 6 + 6 + 4 + 4 + 2 + 4 + 3 + 2 + 0 = 43.

Thus, our code is a [252, 209,≥ 12], F9-linear code.
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[8] L. Rédei, Lacunary Polynomials over Finite Fields, North-Holland, Amster-
dam, 1973.

[9] A. Seidenberg, “Constructions in Algebra,” Transactions of the American
Mathematical Society, 197, pp. 273-313, 1974.
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