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Abstract

An attempt was made to make this a self-contained reading. The first three chapters

are intended to provide the necessary background. Chapter one develops the tools

needed from Galois Cohomology. Chapter two is a brief description of involutions,

and in chapter three we define the notion of (linear) algebraic group, we give some

examples and discuss some of their properties.

In chapter four, we discuss some variants of the classical Skolem-Noether theorem,

requiring only that the subalgebra have a unique faithful representation of full

degree over a separable closure. We verify that we can extend every isomorphism

to the whole algebra by means of inner automorphisms, just as in the classical

case. Examples of algebras that satisfy this condition are simple algebras and

commutative Frobenius algebras. In chapter five, we attach involutions to our

algebras. We show that Skolem-Noether type results hold over a separable closure

and we discuss some descent problems. Chapter six is a study of k-conjugacy classes

of maximal k-tori, the main goal of this dissertation. We are able to give explicit

descriptions of k-conjugacy classes in particular cases. This was done by applying

the general formalism developed in the chapter.
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Introduction

The main objective of this dissertation is to study the k-conjugacy class of a (fixed)

maximal k-torus T in a semi-simple linear algebraic group G. It is well known that,

over a separable closure, all maximal tori of a semi-simple algebraic group G are

conjugate. The interesting question is, what happens over the ground field? When

are two maximal tori T and T ′ conjugate by an element of G(k) = GΓ? To see that

this is not a trivial question consider the following examples.

Example 0.1. If G = SL2 and k = R, take

T1 =


 a b

−b a

 : a2 + b2 = 1


and

T2 =


 a 0

0 b

 : ab = 1


then T1(R) ∼= S1 compact, but T2(R) ∼= R× not compact. So T1 and T2 cannot be

conjugate over R.

Example 0.2. If G = SL2 × SL2 and we take

T = T1 × T2

and

T ′ = T2 × T1

then T and T ′ are not conjugate over R. This example is of particular interest

because even though T and T ′ are abstractly R-isomorphic, they are not conjugate

(over R) because an inner automorphism must preserve the factors, and the factors

are not conjugate as shown in example 0.1.
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Since all maximal tori are conjugate over a separable closure, the set of all maximal

tori is parameterized by the homogeneous space G/N , where N = NG(T ) is the

normalizer of T in G. We have

G/N ←→ set of maximal tori in G

It is readily seen that this bijection commutes with the action of Γ, so if we want

the set of maximal k-tori, we let Γ act on G and look at the fixed points. We have

(G/N)Γ ←→ set of maximal k-tori in G

If in addition we want the k-conjugacy classes of maximal k-tori then we look at

the action of Γ on G/N modulo GΓ, we have

(G/N)Γ /GΓ ←→ set of k-conjugacy classes of maximal k-tori in G

If we consider

1 −→ N
iN−→ G −→ G/N −→ 1 (1)

we can associate to it a sequence in cohomology,

GΓ −→ (G/N)Γ −→ H1(k,N)
(iN )]

−→ H1(k,G) (2)

By the general theory of Galois cohomology, there is a natural bijection between

the orbit set of the group G(k) = GΓ in (G/N)Γ and ker(iN)]. Thus the set

of k-conjugacy classes of maximal k-tori is in one-to-one correspondence with

ker(iN)] ⊂ H1(k,N).

In chapter 6, we define invariants on the set ker(iN)]. We show that these charac-

terize completely the elements of ker(iN)] in low cohomological dimension.
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1. Galois Cohomology

1.1 Profinite Groups. Definition and Examples

Definition 1.3. Let I be a partially ordered set, denote this partial order by 6.

We say that I is a directed set if for all i1, i2 ∈ I there is a j ∈ I such that i1, i2 6 j.

Example 1.4. Let X be any set and Y ⊆ X a subset. Let I = {U ⊂ X : U ⊇ Y }.

Define U 6 V if U ⊇ V , then given U and V in I take U ∩ V .

Example 1.5. Let I = Z \ {0} and for i, j ∈ I say that i 6 j if i | j. If i1, i2 ∈ I

then take j = LCD (i1, i2).

Definition 1.6. Let I be a directed set, {Gi : i ∈ I} topological groups. We say

that the triple
(
I,Gi, π

j
i : Gj −→ Gi

)
is an inverse system of topological groups if

1. πi
i = idGi

for all i

2. i 6 j 6 m =⇒ πj
i ◦ πm

j = πm
i

Definition 1.7. In the situation of definition 1.6 we define the inverse limit of

the Gi’s to be

lim
←
Gi =

{
(gi) ∈

∏
Gi : π

j
i (gj) = gi

}
We call πj

i (gj) = gi the coherence condition.

Definition 1.8. A group G is said to be a profinite group if it is isomorphic (as

topological groups) to some lim
←
Gi, where all of the Gi’s are finite and they all

carry the discrete topology.

Theorem 1.9 ([R], p.40). The following conditions are equivalent:

1. G is a profinite group;
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2. G is a compact, Hausdorff group in which the family of open normal subgroups

forms a fundamental system of neighborhoods of 1;

3. G is a compact, totally disconnected, Hausdorff group.

Example 1.10. Any finite group is trivially profinite.

Example 1.11. The p-adic integers Ẑp
∼= lim
←
Z/piZ are profinite by construction.

For any field k we denote a (fixed) separable closure by ksep. Recall that ksep =⋃
i∈I Li where {Li : i ∈ I} is the partially ordered set of all finite Galois extensions

of k. If Lj ⊃ Li, then we have the restriction maps

πj
i : Gal(Lj/k) −→ Gal(Li/k)

so we can form the profinite group lim
←

Gal(Li/k).

Theorem 1.12 (Krull, [Wi] 6.11.1). With the notation as above,

Gal(ksep/k) ∼= lim
←

Gal(Li/k)

This is actually not so hard to see.

Sketch of Proof . If σ ∈ Gal(ksep/k), just send it to (σ|Li
) this is “coherent”, by

the transitivity of the reduction map. Hence it yields a group homomorphism,

f : Gal(ksep/k) −→ lim
←

Gal(Li/k)

To see that f is injective, take 1 6= σ ∈ Gal(ksep/k), then σ(x) 6= x for some

x ∈ ksep =
⋃

i∈I Li. If x ∈ Li, then σi(x) = σ(x) 6= x. So f(x) 6= 1, i.e. f is

injective. On the other hand, given (σi) ∈ lim
←

Gal(Li/k) we want to produce a

σ ∈ Gal(ksep/k). Choose α ∈ ksep, so α ∈ Li for some i. Is σ(α) = σi(α)? Yes! This

is unambiguous because of the coherence condition, πj
i (σj) = σi, its image under

πj
i does not change. Thus, f is an isomorphism.
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In this section, Γ will denote a profinite group, i.e. a group that is the inverse limit of

a system of finite groups. For the most part, we’ll be dealing with Γ = Gal(ksep/k).

An action of Γ on the left on a discrete topological space is called continuous if

the stabilizer of each point is an open subgroup of Γ. Discrete topological spaces

with continuous left action of Γ are called Γ-sets . A group A which is also a Γ-set

is called a Γ-group if Γ acts by group homomorphisms, that is,

σ(a1 · a2) = σ(a1) · σ(a2) for σ ∈ Γ, a1, a2 ∈ A.

A Γ-group which is commutative is called a Γ-module. In what follows we will

construct the cohomology sets Hi(Γ, A) for i = 0, 1, 2.

1.2 Cohomology Sets

For any Γ-set A, we set H0(Γ, A) to be the elements in A fixed by Γ, that is

H0(Γ, A) = AΓ = {a ∈ A : σa = a for σ ∈ Γ}

If A is a Γ-group, H0(Γ, A) is a subgroup of A.

Let A be a Γ-group. A 1-cocycle of Γ with values in A is a continuous map

α : Γ −→ A

satisfying

αστ = ασ · σατ

where ασ denotes the image in A of σ under α. The set of all 1-cocycles of Γ with

values in A is denoted Z1(Γ, A). We define an equivalence relation, ∼1, on the

1-cocycles as follows

Definition 1.13. Let α, β ∈ Z1(Γ, A),

α ∼1 β ⇐⇒ ∃ a ∈ A× such that ασ = a · βσ · σa−1 ∀σ ∈ Γ

Definition 1.14. H1(Γ, A) = Z1(Γ, A)/ ∼1
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H1(Γ, A) is a based set with neutral element, idA, the identity on A. If α ∼1 β, we

say that α and β are equivalent or cohomologous . If A is a Γ-module, Z1(Γ, A) is

an abelian group for the natural operation (αβ)σ = ασβσ, and H1(Γ, A) inherits

the structure of an abelian group.

If A is a Γ-module, a 2-cocycle of Γ with values in A is a continuous map

α : Γ× Γ −→ A

such that

σατ,ρ · ασ,τρ = αστ,ρασ,τ for σ, τ, ρ ∈ Γ

The set of all 2-cocycles of Γ with values in A is denoted by Z2(Γ, A). This set is

an abelian group for the operation (αβ)σ,τ = ασ,τ · βσ,τ . We define an equivalence

relation, ∼2, on the group of 2-cocycles as follows:

Definition 1.15. Let α, α′ ∈ Z2(Γ, A), α ∼2 α
′ if and only if there exists a map

ϕ : Γ −→ A such that

α′σ,τ = σϕτ · ϕ−1
στ · ϕσ · αστ for all σ, τ ∈ Γ

α and α′ are said to be equivalent or cohomologous .

Equivalence classes of 2-cocycles form an abelian group denoted by H2(Γ, A).

1.3 Functoriality

Let f : A −→ B be a homomorphism of Γ-sets, that is, a map such that f(σa) =

σf(a) for all σ ∈ Γ and a ∈ A. Note that if a ∈ AΓ, then

f(a) = f(σa) = σf(a)

and thus f(a) ∈ BΓ. Hence f restricts to a map

f 0 : H0(Γ, A) −→ H0(Γ, B)

6



Now if A,B are Γ-groups and if f is a group homomorphism, then f 0 is also a

group homomorphism. Furthermore, there is an induced map

f 1 : H1(Γ, A) −→ H1(Γ, B)

given by f 1(α)σ = f(ασ). One important property of f 1 is that it takes the distin-

guished element of H1(Γ, A) to the distinguished element of H1(Γ, B).

The cohomology sets have functorial properties in Γ as well. If Γ0 ⊂ Γ is a closed

subgroup and A is a Γ-group, the action of Γ restricts to a continuous action of

Γ0, and we have the restriction map

res : Hi(Γ, A) −→ Hi(Γ0, A)

for i = 0, 1, 2. Recall that for H2(Γ, A) to make sense A has to be a Γ-module.

1.4 Cohomology Sequences

For a broader discussion on cohomology sequences the reader may want to see

[KMRT, section 28.B].

Let B be a Γ-group, A a normal Γ-subgroup of B, i.e. a normal subgroup of B

invariant under Γ. Set C = B/A, note that it is a Γ-group. We have the inclusion

map, i : A −→ B and the projection map π : B −→ B/A. These two give rise to

the exact sequence

1 −→ A
i−→ B

π−→ C −→ 1 (1.3)

Now the projection, π : B −→ B/A, induces a map of pointed sets BΓ −→ (B/A)Γ.

Let b · A ∈ (B/A)Γ, i.e. σb · A = b · A ∀σ ∈ Γ. The map α : Γ −→ A given by

ασ = b−1 · σb ∈ A is a 1-cocycle with values in A, whose class [α] in H1(Γ, A) is

7



independent of the choice of b in b · A, for

b · A = b′ · A =⇒ b−1σ(b) = b′
−1
σ(b′)

=⇒ b′b−1 = σ(b′b−1)

=⇒ b′b−1 ∈ BΓ

so we have a (connecting) map of pointed sets δ0 : H0(Γ, C) −→ H1(Γ, A) given

by δ0(b · A) = [α], where ασ = b−1 · σ(b).

Proposition 1.16. The sequence

1 −→ AΓ i0−→ BΓ π0

−→ CΓ δ0

−→ H1(Γ, A)
i1−→ H1(Γ, B)

π1

−→ H1(Γ, C)

is exact.

Proof. Exactness at AΓ and at BΓ follow readily from the exactness of sequence

(1.3).

Exactness at CΓ: Suppose the 1-cocycle ασ = b−1·σ(b) ∈ A is trivial in H1(Γ, A),

that is, suppose ασ = a−1 · σ(a) for some a ∈ A. Then b−1 · σ(b) = a−1 · σ(a), so

σ(ba−1) = ba−1. Hence ba−1 ∈ BΓ and the coset bA = ba−1A ∈ B/A is equal to

the image of ba−1 ∈ BΓ under π0.

Exactness at H1(Γ, A): If α ∈ H1(Γ, A) is in ker i1, then i ◦ ασ = b−1σb for

some b ∈ B. Hence ασ = i−1 (b−1σb) ∀σ ∈ Γ and α = δ0(c) where c = π(b). On

the other hand, if α ∈ Imδ0 then there is a b ∈ B such that ασ = i−1 (b−1σb) so

i1ασ = iασ = b−1σb, i.e. i1α ≡ idA. Thus, α ∈ ker i1.

Exactness at H1(Γ, B): Let β ∈ Z1(Γ, B), where [β] ∈ ker π1. Then

βσ · A = b−1σbA for some b ∈ B

= b−1Aσb as A is normal.
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so βσ = b−1ασσb for some ασ ∈ Z1(Γ, A). Hence β is in the same class as the image

of [α] under i1. So kerπ1 ⊂ Im i1. But clearly Im i1 ⊂ ker π1. So, we have exactness

at H1(Γ, B).

Corollary 1.17. There is a natural bijection between ker i1 and the orbit set of

the group BΓ in CΓ = (B/A)Γ.

Proof. A coset b · A ∈ CΓ determines the element δ0(b · A) = [b−1 · σ(b)] ∈ ker i1.

It is readily seen that δ0(b ·A) = δ0(b′ ·A) if and only if the cosets b ·A and b′ ·A

lie in the same BΓ-orbit in CΓ.

Corollary 1.18. There is a natural bijection between kerπ1 and the orbit set of

the group CΓ in H1(Γ, A).

Proof. The group CΓ acts on H1(Γ, A) as follows: For c = b · A ∈ CΓ and α ∈

Z1(Γ, A), set c[α] = [β] where βσ = b · ασ · σb−1.

In general, this is as far as we can go with non-abelian cohomology. However if

we have a central extension, i.e. i(A) ⊂ Z(B), then we can go a seventh term,

H2(Γ, A). Since i(A) ⊂ Z(B), A is an abelian group. We can define a (connecting)

map δ1 : H1(Γ, C) −→ H2(Γ, A) of pointed sets as follows:

Given γ ∈ H1(Γ, C), choose a map β : Γ −→ B such that βσ is mapped to

γσ ∀σ ∈ Γ and consider the function α : Γ× Γ −→ A given by

ασ,τ = βσ · σβτ · β−1
στ

We need to prove that α ∈ Z2(Γ, A) and that [α] does not depend on the choices

of γ ∈ [γ] and β. To see that α ∈ Z2(Γ, A) we need to check that

σατ,ρ · ασ,τρ = αστ,ρ · ασ,τ

9



so it is enough to see that

α−1
σ,τσατ,ρ · ασ,τρα

−1
στ,ρ = 1

this is equivalent to

α−1
σ,τ · βσσατ,ρβ

−1
σ · ασ,τρ · α−1

στ,ρ = 1

which is clear since we have cancellation all over, just substituting we get

(βστ · σβ−1
τ · β−1

σ )βσ(σβτ · στ(βρ) · σβ−1
τρ )

β−1
σ

(
βσ · σβτρ · β−1

στρ

) (
βστρ · στ(βρ)

−1β−1
στ

)
= 1

Now if we replace βσ by α′σβσ the 2-cocycle ασ,ρ is replaced by the cohomologous

2-cocycle α′σ,τ · ασ,τ with

α′σ,τ = α′σ · βσσα
′
τβ
−1
σ · α′σ,τ

−1

Thus, we can define δ1([γ]) = [α], and we have:

Proposition 1.19. The sequence

1 −→ AΓ i0−→ BΓ π0

−→ CΓ δ0

−→ H1(Γ, A)

i1−→ H1(Γ, B)
π1

−→ H1(Γ, C)
δ1

−→ H2(Γ, A)

is exact.

Proof. We need only check exactness at H1(Γ, C). Suppose that for some γ ∈

Z1(Γ, C) and some β , α as above we have

ασ,τ = βσσβτ · β−1
στ = aσσaτ · a−1

στ

for some aσ ∈ A, that is, γ ∈ ker δ1, then βσa
−1
σ ∈ Z1(Γ, B), call it β′σ. But then

γ = π1([β′]).

10



Corollary 1.20. There is a natural bijection between ker δ1 and the orbit set of

the group H1(Γ, A) in H1(Γ, B).

Proof. Two elements of H1(Γ, B) have the same image in H1(Γ, C) if and only if

they are in the same orbit under the action of H1(Γ, A).

Remark 1.21. The group H1(Γ, A) acts naturally on H1(Γ, B) by

(α · β)σ = ασ · βσ

1.5 Some Applications

Let’s see some applications of Galois Cohomology. Let L/k be a finite field exten-

sion, and set GL = Gal(L/k), in particular we’ll use Γ for Gal(ksep/k).

Lemma 1.22. H1(GL, L) = {1}.

Proof. By the normal basis theorem, L is a free kGL-module.

Theorem 1.23 (Linear Independence of Characters). Let Γ be a monoid,

L a field, and let f1, . . . , fn be distinct homomorphisms Γ −→ L×. Then the

homomorphisms f1, . . . , fn are linearly independent over L.

Proof. Suppose that f1, . . . , fn are linearly dependent over L. Take a linear com-

bination

c1f1 + c2f2 + · · ·+ ckfk = 0 (1.4)

of minimal length k (after renumbering if necessary) where ci 6= 0 for all i =

1, . . . , k. Let σ, τ ∈ Γ and evaluate (1.4) at σ. We get

c1f1(σ) + c2f2(σ) + · · ·+ ckfk(σ) = 0

and multiplying this by f1(τ) we have

c1f1(στ) + c2f2(σ)f1(τ) + · · ·+ ckfk(σ)f1(τ) = 0

11



so

c2(f1(τ)− f2(τ))f2(σ) + · · ·+ ck(f1(τ)− fk(τ))fk(σ) = 0

and since k was minimal and all the ci’s where non-zero we must have

f1(τ)− f2(τ) = f1(τ)− f3(τ) = · · · = f1(τ)− fk(τ) = 0

hence all the homomorphisms agree on τ , which was arbitrary, i.e.

f1(τ) = f2(τ) = f3(τ) = · · · = fk(τ) = 0

but this is impossible since the fi’s were distinct.

Lemma 1.24. H1(GL, L
×) = {1}.

Proof. Choose a 1-cocycle α : GL −→ L×. By theorem 1.23 the elements of GL,

regarded as characters L× = Γ −→ L×, are linearly independent. Hence we may

pick c ∈ L such that b 6= 0 where

b =
∑

σ∈GL

ασσ(c)

Apply τ ∈ GL to get

τ(b) =
∑

σ∈GL

ταστσ(c) =
∑

σ∈GL

α−1
τ (αττασ) τσ(c)

=
∑

σ∈GL

α−1
τ ατστσ(c)

= α−1
τ

∑
σ∈GL

ατστσ(c) = α−1
τ b

so ατ = bτ(b)−1, hence α is cohomologous to the trivial 1-cocycle.

Let V be a finite dimensional k-vector space, so V ∗ = Homk(V, k).

Let V (p,q) = V ⊗k · · · ⊗k V︸ ︷︷ ︸
p−times

⊗k V
∗ ⊗k · · · ⊗k V

∗︸ ︷︷ ︸
q−times

= V ⊗p ⊗k V
∗⊗q

. Elements of V (p,q)
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are called (p, q)- tensors. Suppose thatW is also a finite dimensional k-vector space,

and f : V
∼−→W is an isomorphism. We want to construct a map V (p,q) −→W (p,q).

We have f p : V ⊗p −→ W⊗p, f ∗ : W ∗ ∼−→ V ∗, and so
(
f ∗

⊗q
)−1

= f q : V ∗
⊗q −→

W ∗⊗q
. Hence we get a map f (p,q) : V (p,q) −→ W (p,q) which, by abuse of notation,

we will also call f .

Definition 1.25. A (p, q) k-object is a pair (V, x), where x ∈ V (p,q).

Definition 1.26. An isomorphism of (p, q)-objects (V, x) −→ (W, y) is an isomor-

phism of vector spaces f : V −→W such that f(x) = y.

Example 1.27. If (p, q) = (0, 0), then V (0,0) = k. Take x = 1 ∈ k. Our object

(k, 1) is just a vector space.

Example 1.28. Suppose V is endowed with a k-bilinear form b : V × V −→ k.

From this we get b : V ⊗ V −→ k, so (V, b) is an object of type (0, 2).

Suppose f : (V, b) −→ (W, b′), to be an isomorphism of such (0, 2)-objects means

that for any v, v′ ∈ V we must have b(v, v′) = b′(fv, fv′).

Example 1.29. Suppose V is a k-algebra, and µ : V×V −→ V gives multiplication

in V . We get µ : V ⊗ V −→ V so µ ∈ Homk(V ⊗ V, V ) = V ⊗ V ∗⊗2
. Hence to get

an algebra we need (1, 2)-tensors.

Now fix two k-objects (V, x) and (W, y). For any σ ∈ GL, we have σ(v⊗`) = v⊗σ`.

Hence (VL)GL = V ⊗k k = V , similarly for W .

Now take x ∈ V (p,q) ⊂ V
(p,q)
L and y ∈ W (p,q) ⊂ W

(p,q)
L , and suppose that we have

an isomorphism of L-objects f : VL
∼−→ WL such that f(x) = y. Can we get an

isomorphism of k-objects? If not, can we measure the obstruction?

Set σf = σ ◦ f ◦ σ−1, A = Aut (VL, x), and ασ = f−1 ◦ σf . Note that ασ ∈ A and

13



α : GL −→ A is a 1-cocycle, since

αστ = f−1 ◦ στf = f−1 ◦ σf ◦ σ(f−1 ◦ τf) = ασ ◦ σατ

Remark 1.30. Replacing f by f ◦g for any g ∈ A yields a cohomologous 1-cocycle.

ασ changes to g−1 ◦ f−1 ◦ σf ◦ σg.

If α is the trivial 1-cocycle, then ασ = c−1 ◦σc for all σ ∈ GL, so c−1 ◦σc = f−1 ◦σf ,

i.e. f ◦ c−1 is a GL-equivariant isomorphism, so (f ◦ c−1)
GL : V

∼−→W .

Let E(L/k) denote the set of isomorphism classes of k-objects which become iso-

morphic to (V, x) over L. The above argument gives an injective map

θ : E(L/k) −→ H1(GL, A) where A = Aut (VL, x).

Theorem 1.31. θ is a bijection.

Sketch of Proof . Choose α ∈ H1(GL, A). As A ⊂ GL (VL), by 1.24 we can find

f ∈ GL (VL) such that ασ = f−1◦σf . Extend f to V
(p,q)
L as before and set y = f(x).

To show that (V, y) is a k-object, we want to show that y ∈ V (p,q) (not just V
(p,q)
L ).

It is easily seen that σy = y, thus f : (VL, x) −→ (VL, y) is an isomorphism of

L-objects and its associated 1-cocycle is given by ασ = f−1 ◦ σf .

For a broader discussion on this see [KMRT, p.392] or [Se2, p.152].

If char k 6= 2, and b is a non-degenerate skew-form on a k-vector space V , we define

the symplectic group as

Sp(V, b) = {γ ∈ GL(V ) : b(v, v′) = b(γv, γv′)}

Theorem 1.32. H1(GL, Sp(VL, b)) = {1}.

Proof. This set classifies skew-forms on V which become isomorphic on VL. But

it is well-known that all non-degenerate skew-forms on V are isomorphic. Thus

H1(GL, Sp(VL, b)) = {1}.

14



Theorem 1.33. H1(GL,GLnL) = {1} for all n > 1.

Proof. This set classifies vector space structures of V which become isomorphic on

L, there is only one such.

Theorem 1.34. H1(GL,SLnL) = {1}.

Proof. Consider the exact sequence

1 −→ SLnL −→ GLnL
det−→ L× −→ 1

Looking at its associated exact sequence in cohomology we have

1 −→ SLnk −→ GLnk −→ k×
δ0

−→ H1(GL,SLnL) −→ H1(GL,GLnL)︸ ︷︷ ︸
={1} by 1.24

so the sequence becomes

1 −→ SLnk −→ GLnk
det0−→ k×

δ0

−→ H1(GL,SLnL) −→ 1

and so applying the first isomorphism theorem we have

k×/ ker δ0 ∼= Imδ0

But ker δ0 = Im det0 ∼= k× and δ0 is also surjective since the sequence is exact.

Hence Imδ0 is isomorphic to H1(GL,SLnL) and so H1(GL,SLnL) = {1}.

1.6 Kummer Theory

Let k be a field, and let k ⊃ µn be the set of nth roots of unity, where gcd(n, char k) =

1, and Γ = Gal(ksep/k). We have an exact sequence of discrete Γ-modules

1 −→ µn −→ k×sep
n−→ k×sep −→ 1

15



where the map n takes x ∈ k×sep to xn. Looking at the associated sequence in

cohomology we get:

1 −→ µn −→ k×
n−→ k× −→ H1(Γ, µn) −→ H1(Γ, k×sep)︸ ︷︷ ︸

= lim
→

H1(GL, L
×)︸ ︷︷ ︸

={1} by 1.24

Thus we have

Theorem 1.35 (Kummer, [KMRT] 30.1). H1(Γ, µn) ∼= k×/k×
n
.

Proof. Just apply the first isomorphism theorem to the above sequence in coho-

mology.

1.7 Central Simple Algebras

A finite dimensional k-algebra A is called a central simple k-algebra or a central

simple algebra over k (sometimes denoted CSA over k) provided:

1. k = Z(A)

2. A has no proper 2-sided ideals.

Theorem 1.36 (Wedderburn). Let A be a central simple algebra over k, and

M be a simple (irreducible) left A-module. Then

1. D = EndA(M) is a division algebra with Z(D) = k.

2. A ∼= Mn(D) for some n.

Proof. See, for example, [Sc, Theorem 1.11] on p. 284.

Example 1.37. A = Mnk is a CSA over k.

Example 1.38. Let D be a skew field. Set k = Z(D). Then D is a CSA over k.
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Example 1.39. Let H ⊂M2C be the algebra of Hamilton quaternions

H =


 a b

−b̄ −ā

 : a, b ∈ C


Then H is a CSA over R, and H⊗R C ∼= M2C.

Theorem 1.40 (Skolem-Noether, [KMRT] 1.4). Let A be a central simple

algebra over k, and B be a simple k-algebra. Suppose that f, g : B −→ A are any

two k-algebra embeddings. Then there is an a ∈ A× such that f(b) = ag(b)a−1 ∀ b ∈

B.

Before proving this result we state the following immediate corollary:

Corollary 1.41. Let A be a central simple algebra over k, and let Aut(A) denote

the group of all k-algebra automorphisms of A, then

Aut(A) ∼= A×/k×

Proof. Define a homomorphism

Inn : A×/k× −→ Aut(A)

: a 7→ (x 7→ axa−1)

Since A is central over k, Inn is injective. To see that Inn is surjective, let ϕ : A −→

A be an automorphism, and apply the Skolem-Noether theorem with B = A, f =

ϕ, and g = idA. We get ϕ(x) = axa−1 for some a ∈ A× and all x ∈ A, so

ϕ = Inn(a).

In particular, Aut(Mnk) ∼= (GLnk) /k
× = PGLnk, where k× is isomorphic to the

diagonal matrices.

Proof. (of 1.40) Let us break the proof up into two cases.

17



Case 1: Suppose A is split, i.e. A = Endk(D) for some skew-field D.

Since A is a CSA over k, write A = MnD, where D is a skew-field. Let S =

Dn (D = EndA(S)). A acts on S by left matrix multiplication, where the elements

of S are written as column vectors. We know that S is the simple A-module. Let

C = D ⊗k B, notice that, in particular, C is a simple algebra. We will define two

C-module structures on S. For all d ∈ D, b ∈ B, x ∈ S we define:

Sf : (d⊗ b)(x) = d(f(b)x)

Sg : (d⊗ b)(x) = d(g(b)x)

C being a simple algebra, all C-modules are sums of copies of the simple C-module

S. In particular, if S1 and S2 are C-modules of the same dimension over k, they

are isomorphic. Hence Sf and Sg are isomorphic as C-modules, i.e. there exists

θ : S −→ S such that

θ (df(b)x) = d (g(b)θ(x)) (1.5)

for all d ∈ D, b ∈ B, and x ∈ S. So, taking b = 1 in (1.5) above, we have

θ(dx) = dθ(x), hence θ commutes with d, i.e.

θ ∈ EndD(S) = EndD(Dn) ∼= Mn(D) = A

so θ is just left multiplication by an element of A×, say a. Again from (1.5) above

we have

a (df(b)x) = d (g(b)ax)

for all d ∈ D, b ∈ B, and x ∈ S. Taking d = 1, we get af(b)x = g(b)ax for all

x ∈ S, hence af(b) = g(b)a for all b ∈ B. Therefore,

af(b)a−1 = g(b) for all b ∈ B
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Case 2: General Case

Consider the maps

f ⊗ id, g ⊗ id : B ⊗ Aop −→ A⊗ Aop = Endk(A)

Since B ⊗ Aop is simple (as B is), we may apply corollary 1.41. By the corollary

there exists an invertible ϕ ∈ A⊗ Aop such that

(gb)⊗ a′ = ϕ−1 (f(b)⊗ a′)ϕ for all b ∈ B, a′ ∈ Aop

Setting b = 1, one sees that f commutes elementwise with all elements of 1⊗Aop ∼=

Aop. But ϕ = ψ ⊗ 1 for some a ∈ A. Setting a′ = 1 yields

gb = a−1(fb)a ∀b ∈ B

The Skolem-Noether theorem states that every isomorphism of a simple subalgebra

can be extended to the entire algebra in a very particular way, namely by an inner

automorphism.

1.8 The Brauer Group

We now define an equivalence relation ∼ on central simple algebras over k as fol-

lows: Let A ∼= MnD and B ∼= MmD
′, then

A ∼ B ⇐⇒ D ∼= D′ as k-algebras and n = m

Denote the equivalence class of A as [A], then we define the product of two equiv-

alence classes to be [A] · [B] := [A ⊗ B], later we will write this additively, i.e.

[A] + [B] = [A ⊗ B]. Let Br(k) be the set of equivalence classes of central simple

algebras over k. Br(k) with this operation is actually an abelian group, called the
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Brauer group of k, the associativity of the product follows from the associativity

of the tensor product. Br(k) has identity [k], and the inverse of a class [A] is the

class of its opposite algebra [Aop].

Example 1.42. If k is algebraically closed, then Br(k) = {0}.

Proof. Let D be a skew field, central over k. We need to show that D = k. Choose

λ ∈ D, and let `λ : D −→ D be left multiplication by λ, a k-linear map. Since k is

algebraically closed, `λ has an eigenvector. Call it v. So `λ(v) = av for some a ∈ k.

Hence, we have the following

λv = av ⇐⇒ (λ− a)v = 0 (v 6= 0)

⇐⇒ λ− a = 0

⇐⇒ λ = a ∈ k

Theorem 1.43 (Tsen). If k is a function field in one variable over an algebraically

closed field, then Br(k) = {0}.

Proof. See [Sh].

If L/k is a finite field extension we define a map

⊗k L : Br(k) −→ Br(L)

: [A] 7−→ [A⊗k L]

Definition 1.44. We define the relative Brauer group of a finite field extension,

Br(L/k), to be ker ( ⊗k L).
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Note that these are the central simple algebras over k that split over L, i.e. A⊗kL ∼=

MnL. Another way to view Br(k) is as follows

Br(k) =
⋃
L/k

Br(L/k) = lim
→

Br(L/k)

where L/k are all the finite separable field extensions of k. In fact one can show

Theorem 1.45. Br(L/k) ∼= H2(GL, L
×).

Proof. Define a vector space A over L with basis {aσ : σ ∈ GL}. Hence the elements

of A may be written uniquely in the form
∑

σ∈GL

cσaσ with cσ ∈ L. Now, given a

2-cocycle ψ ∈ H2(GL, L
×) we define a multiplication in A with relations as follows:

aσaτ = ψσ,τaστ and aσc = σ(c)aσ for all c ∈ L

The 2-cocycle condition assures the associativity of this product. Now, denote by

A(ψ) the algebra just defined. We will state the following facts without proof. The

proofs may be found in [J, section 8.4].

1. The algebra A(ψ) is a central simple algebra over k.

2. A(ψ)⊗k A(ϕ) ∼= A(ψ + ϕ)⊗k Mn(k).

3. The trivial 2-cocycle yields the matrix algebra Mn(k), where n = [L : k].

4. A(ψ) ∼= A(ϕ) if and only if ψ and ϕ are cohomologous.

5. Every central simple algebra is isomorphic to an algebra A(ψ) for some 2-

cocycle ψ ∈ H2(GL, L
×).

From these (non-trivial) facts we conclude that the correspondence ψ 7−→ A(ψ)

defines a group isomorphism

H2(GL, L
×)

∼−→ Br(L/k)
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as desired.

Example 1.46. Br(C/R) ∼= H2(C2,C×) ∼= Z/2Z. The non-zero element of Br(C/R)

corresponds to the 4-dimensional algebra of Hamiltonian quaternions H.

As an immediate consequence of theorem 1.45 we have:

Corollary 1.47. Br(k) ∼= H2(Γ, k×sep).

In particular, Br(k) is always a torsion group. Hence, one can look at the n-th

torsion of Br(k),

nBr(k) = {[A] ∈ Br(k) : [A⊗n] = 0}

Around 1980, Suslin and Merkujev proved that nBr(k) is generated by n-cyclic

algebras. The interested reader may want to see [Wi, section 6.11].

1.9 Étale Algebras

Let k be an arbitrary field, ksep denote a (fixed) separable closure of k, and Γ =

Gal (ksep/k) be the absolute Galois group of k. Let V0 be a k-vector space. The left

action of Γ on V = V0 ⊗k ksep defined by

γ ∗ (u⊗ x) = u⊗ γ(x) for u ∈ V0, x ∈ ksep

is semi-linear with respect to Γ, i.e.

γ ∗ (vx) = (γ ∗ v)γ(x) for v ∈ V, x ∈ ksep

Lemma 1.48 (Galois Descent, [KMRT] 18.1). Let V be a ksep-vector space.

If Γ acts continuously on V by semi-linear automorphisms, then

V Γ = {v ∈ V : γ ∗ v = v ∀ γ ∈ Γ}
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is a k-vector space and the map

V Γ ⊗ ksep −→ V

v ⊗ x 7−→ vx

is an isomorphism of ksep-vector spaces.

Proof. See [KMRT, Lemma 18.1] on p.279.

Let Algk be the category of unital commutative associative k-algebras with k-

algebra homomorphisms as morphisms. For every finite dimensional commutative

k-algebra L, let

X(L) = HomAlgk
(L, ksep)

For any field extension F/k, let LF be the F -algebra L⊗kF . Notice that if F ⊂ ksep,

then ksep is also a separable closure of F , and every k-algebra homomorphism

L −→ ksep extends uniquely to an F -algebra homomorphism LF −→ ksep. Hence

we can identify X(LF ) = X(L).

Proposition 1.49. For a finite dimensional commutative k-algebra L, the follow-

ing statements are equivalent:

1. For every field extension F/k, the F -algebra LF is reduced, i.e. LF does not

contain any non-zero nilpotent elements;

2. L ∼= F1 × · · · × Fr for some finite separable field extensions F1, · · · , Fr of k;

3. Lksep
∼= ksep × · · · × ksep;

4. The bilinear form T : L× L −→ k induced by the trace:

T (x, y) = TrL/k(xy) for x, y ∈ L

is non-singular;
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5. cardX(L) = dimk L;

6. cardX(L) > dimk L.

If the field k is infinite, the above statements are also equivalent to:

7. L ∼= k[X]/(f) for some polynomial f ∈ k[X] which has no multiple root in an

algebraic closure of k.

Proof. See [KMRT, Proposition 18.3] p.281.

A finite-dimensional commutative k-algebra satisfying any (and hence all) of the

conditions above is called an étale k-algebra. Notice from the first (or fourth)

statement that étale algebras remain étale under scalar extensions.

We now use Hilbert’s theorem 90 to show how étale algebras are classified by an

H1-cohomology set.

The k-algebra A = k × · · · × k (n copies) is étale of dimension n. For if {ei}ni=1 is

the set of primitive idempotents of A, any k-algebra automorphism is completely

determined by the images of the ei’s. Thus, Autalg(A) is the constant symmetric

group Sn. Proposition 1.49 shows that the étale k-algebras of dimension n are

precisely the twisted forms of A = k × · · · × k. Therefore we have a bijection:

H1(k, Sn)xy
k-isomorphism classes of étale k-algebras of degree n

For a more detailed discussion on Étale Algebras the interested reader may refer

to [KMRT, section 18.A].
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1.10 The p-Cohomological Dimension of a

Profinite Group

Let p be a prime number, and let G be a profinite group.

Definition 1.50. A profinite group G is said to be a pro-p-group if it is the inverse

limit of p-groups, i.e. if its order is a power of p.

Definition 1.51. If G is a profinite group, a closed subgroup H of G is said to be

a p-Sylow group of G if H is a pro-p-group and (G : H) is prime to p.

Example 1.52. Zp = lim
←
Z/pnZ is a pro-p-group.

Theorem 1.53 (Sylow Theorem for Profinite Groups). Let G, G1 and G2

be profinite groups.

1. G possesses p-Sylow subgroups.

2. If H is any pro-p-subgroup of G, then H is contained in some p-Sylow sub-

group of G.

3. Any two p-Sylow subgroups of G are conjugate in G.

4. |G| =
∏

p |Gp|, where Gp is a p-Sylow group of G.

5. If h : G1 −→ G2 is a continuous surjective homomorphism of profinite groups,

then the image of a p-Sylow group is a p-Sylow group.

Proof. See [R, p.47].

For a profinite group G, let Mod(G) denote the category of G-modules, and let

Modt(G) denote the full subcategory of Mod (G) consisting of the torsion modules

(torsion as abelian groups). If A ∈ Modt(G) and p is a prime number, denote by

A(p) the p-primary part of A, i.e. those elements of A of order pn for some n. If

A(p) = A we say A is p-primary.
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Proposition 1.54. If G is a pro-p-group, every simple p-primary G-module A is

isomorphic to Z/pZ.

Definition 1.55. The p-cohomological dimension of G, denoted cdp(G), is the

lower bound of the set of natural numbers n satisfying:

Hq(G,A)(p) = 0 for all q > n and all A ∈ Modt(G). (1.6)

By convention, if there is no integer n satisfying (1.6) cdp(G) = +∞. One calls

cd(G) = sup cdp(G) the cohomological dimension of G.

Proposition 1.56. Let G be a profinite group, let p be a prime number, and let n

be an integer. The following statements are equivalent:

a. cdp(G) 6 n;

b. Hq(G,A) = 0 for all q > n and all p-primary A ∈ Modt(G);

c. Hn+1(G,A) = 0 for all simple p-primary G-modules A.

Proof. See [R, p.200].

Proposition 1.57. Let H ⊂ G be profinite groups, and p a prime number. Then

cdp(H) 6 cdp(G)

Moreover, equality holds in either of the following cases

1. p - (G : H)

2. H is open in G and cdp(G) <∞

Proof. See [R, p.204].

Corollary 1.58. Let Gp be a p-Sylow group of G. Then

cdp(G) = cdp(Gp) = cd (Gp)
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Corollary 1.59. cdp(G) = 0⇐⇒ p - |G|

Corollary 1.60. If cdp(G) 6= 0, ∞, then p∞ divides |G|.

Corollary 1.61. If G is finite and p - |G|, then cdp(G) =∞.

Proposition 1.62. Let N be a normal closed subgroup of a profinite group G, and

let p be a prime. Then

cdp(G) 6 cdp(N) + cdp(G/N)

Proof. [R, p.209].
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2. Involutions

2.1 Involutions on Rings

Definition 2.63. Let R be a ring. An involution on R is a map σ : R −→ R such

that for all a, b ∈ R

1. σ(a+ b) = σ(a) + σ(b)

2. σ(ab) = σ(b)σ(a)

3. σ2(a) = a

The pair (R, σ) is called a ring with involution.

Example 2.64. (C, )̄ is a ring with involution, where ¯ denotes complex conjuga-

tion.

Example 2.65. Let R be any commutative ring, then the transpose is an involu-

tion on Mn(R).

Definition 2.66. Let k be a field. For a, b ∈ k× define a 4-dimensional k-algebra

with basis 1, e1, e2, e3 by the following multiplication table:

e1e2 = e3, e2e1 = −e1e2, e21 = a · 1 (= a), e22 = b · 1 (= b)

This algebra is denoted by (a, b) = (a, b)k and called a quaternion algebra over k.

The subspace e1k+ e2k+ e3k = {x ∈ (a, b) : x2 ∈ k, x 6∈ k×} is denoted by (a, b)0,

and is called the subspace of pure quaternions. Hence we have

(a, b) = k · 1⊕ (a, b)0
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Thus, if x ∈ (a, b), then x = x0 + x1, where x0 ∈ k and x1 ∈ (a, b)0 are uniquely

determined. The map

σ : (a, b) −→ (a, b)

x 7−→ x0 − x1

is a k-linear involution, and it is called the canonical involution on the quaternion

algebra (a, b).

Example 2.67. The canonical involution on a quaternion algebra.

Example 2.68. Let G be a group, and k be a field. Let A = k[G] be the group

algebra of G over k. The canonical involution on A is the k-linear extension of

σ : g 7→ g−1.

In the category of rings with involutions, a morphism is a ring homomorphism

f : (R, σ) −→ (S, τ) with τ(f(x)) = f(σ(x)) for all x ∈ B. If R is a commutative

ring, the identity is an involution. If R is not commutative, the identity is not

an involution. For every involution σ the fixed elements form a subring Rσ =

{α ∈ R : σα = α} of R.

Remark 2.69. Let V be a k-space, where char k 6= 2, then there is a one-to-one

correspondence between involutions on V and idempotents on Endk(V ).

Proof. If e ∈ Endk(V ) is an idempotent, associate to it 2e − id an involution on

V . On the other hand, if τ is an involution on V , associate to it the idempotent

1
2
(τ + id).

Definition 2.70. Let R be a ring with involution σ, and M be a right R-module

1. A sesquilinear mapping or a sesquilinear form onM is a map s : M×M −→ R

such that
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a. s(x+ y, z) = s(x, z) + s(y, z)

b. s(x, y + z) = s(x, y) + s(x, z)

c. s(x, yα) = s(x, y)α

d. s(xα, y) = σ(α)s(x, y)

for all x, y ∈M and α ∈ R. The transpose σs of a sesquilinear map is defined

by σs(x, y) = σ(s(y, x)).

2. Let Z = Z(R) be the center of R. Let λ ∈ Z satisfy λσ(λ) = 1. Then a

sesquilinear form h : M ×M −→ R is called λ-hermitian if h = λσ(h), i.e.

h(x, y) = λ(σh(x, y)) for all x, y ∈M . The pair (M,h) is called a λ-hermitian

module or a λ-hermitian space.

Remark 2.71. If λ = 1, h is simply called a hermitian form.

An involution σ on a skew field D is called of the first kind if σ is the identity on Z,

the center of D. Otherwise the involution is called of the second kind. In this case

σ|Z is an automorphism of order 2. Define Zσ = {α ∈ Z : σα = α}. Thus Z = Zσ

for involutions of the first kind and Z/Zσ is a separable quadratic extension for

involutions of the second kind. In the case of involutions of the first kind only

λ = ±1 appear. We thus have, hermitian forms (λ = 1), or skew hermitian forms

(λ = −1). In the case of involutions of the second kind, we can assume without

loss of generality that λ = 1, and thus we have only hermitian forms.

2.2 Involutions on Central Simple Algebras

Definition 2.72. An involution on a central simple algebra A over an arbitrary

field k is a map σ : A −→ A such that for all x, y ∈ A

1. σ(x+ y) = σ(x) + σ(y)
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2. σ(xy) = σ(y)σ(x)

3. σ2(x) = x

Notice that if A is a k-algebra σ is not necessarily k-linear. However, k is stable

under σ. Hence σ|k is an automorphism which is either the identity or of order 2.

If the involution σ is such that

1. σ|k = id, then σ is said to be an involution of the first kind .

2. σ|k 6= id, then σ is said to be an involution of the second kind .

Involutions of the first kind are divided into two types: the orthogonal type and

the symplectic type. Involutions of the second kind are called unitary or of unitary

type.

Example 2.73. For any field k, take A = Mn(k) together with the transposition.

Example 2.74. There could be different involutions on Mn(k), for example if

n = 2, we have the involution a b

c d

 7−→
 d −b

−c a


which is clearly different from the transposition.

Example 2.75. Let (R, σ) be any ring with involution, then

(aij) 7−→ t(σ(aij))

is an involution on Mn(R).

There is also the concept of adjoint involution which we will find particularly useful

so we will define it here.

Let k be an arbitrary field of characteristic different from 2. Let (V, q) be a
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quadratic space of dimension 2n over k, where q is a non-degenerate form, and

b is the symmetric bilinear form associated to q. We can define an (adjoint) invo-

lution σb from the bilinear form b as follows

Definition 2.76. For any f ∈ Endk(V ) define σb(f) ∈ Endk(V ) by

σb(f) = b̂−1 ◦ f t ◦ b̂

where b̂ : V
∼−→ V ∗ is the isomorphism induced by b, and f t ∈ Endk(V

∗) denotes

the transpose of f defined by mapping ϕ ∈ V ∗ to ϕ ◦ f .

Equivalently,

Definition 2.77. With the notation as above, σb is defined by the condition

b(σb(f)(x), y) = b(x, f(y))

for x, y ∈ V

In particular σb is k-linear.

We can also define the adjoint involution σh of a hermitian form h : V × V −→ k

defined on a vector space V over quadratic field extension L/k.

Definition 2.78. σh is defined by the condition

h(σh(f)(x), y) = h(x, f(y))

for any x, y ∈ V and any f ∈ Endk(V ).
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3. Linear Algebraic Groups

3.1 Definition and Examples

Let k be an algebraically closed field.

Definition 3.79. An algebraic group over k is an algebraic variety G, endowed

with the structure of a group, with distinguished element e ∈ G, and such that the

maps defining the group structure

µ : G×G −→ G with µ(x, y) = xy

i : G −→ G with i(x) = x−1

are morphisms of varieties.

If the underlying variety is affine, then G is called a linear algebraic group. A mor-

phism of algebraic groups is a morphism of varieties which is also a homomorphism

of groups.

Let G be a linear algebraic group, and set A = k[G]. The group structure of G is

defined by algebra homomorphisms

µ∗ : A −→ A⊗k A

i∗ : A −→ A

and the identity element e is a homomorphism A −→ k.

Example 3.80. Let G = A1 with e = 0, group law given by µ(x, y) = x+ y, and

i(x) = −x. We denote this algebraic group by Ga: it is the additive group.

Example 3.81. G = A1\{0} with e = 1 and group law given by µ(x, y) = xy and

i(x) = x−1. We denote this algebraic group by Gm or GL1: it is the multiplicative

group.
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If n is a non-zero integer, then ϕ : Gm −→ Gm given by ϕ(x) = xn defines a

homomorphism of algebraic groups. If char k = p > 0, and n = pm for some m,

then ϕ is an isomorphism of abstract groups but not of algebraic groups, since

ϕ∗ : k[Gm] −→ k[Gm] is not surjective.

Example 3.82. View the space Mn of all n×n-matrices as kn2

sep. The general linear

group GLn consists of all n×n-matrices with non-zero determinant, together with

matrix multiplication as group operation. We have

k[GLn] = k[Tij, D
−1]16i,j6n

where D = detTij. Here µ∗ is given by

µ∗Tij =
n∑

h=1

(Tih ⊗ Thj)

and i∗Tij is the (i, j)-entry of the matrix of (Tij)
−1. The identity e sends Tij to δij.

Since Mn is an irreducible variety, so is GLn. It has dimension n2.

Example 3.83. Any closed subgroup of GLn in the Zariski topology is a linear

algebraic group. Here are some of them:

a. Any finite subgroup of GLn;

b. Dn = {X = (xij) ∈ GLn : xij = 0 if i 6= j}, the group of non-singular diagonal

matrices;

c. Tn = {X = (xij) ∈ GLn : xij = 0 if i > j}, the group of non-singular upper tri-

angular matrices;

d. Un = {X = (xij) ∈ GLn : xij = 0 if i > j and xii = 1}, the group of non-singular

unipotent upper triangular matrices;

e. SLn = {X ∈ GLn : detX = 1}, the special linear group;
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f. On = {X ∈ GLn : X ·X t = 1}, the orthogonal group;

g. SOn = On ∩ SLn, the special orthogonal group;

h. Sp2n = {X ∈ GL2n : X t · J ·X = J}, where J =

 0 Idn

−Idn 0

, the sym-

plectic group.

Example 3.84. Let Q be a quadratic form of rank n over k, where char k 6= 2. If

B is a symmetric matrix representing Q, then

SO(Q) =
{
X ∈ SLn : X t ·B ·X = B

}
is called the special orthogonal group of Q. When Q is the unitary form (〈1, . . . , 1〉),

we denote SO(Q) by SOn.

Remark 3.85. SLn, Sp2n, and SO(Q) are examples of the so-called classical

groups. SLn is of type An−1. Sp2n is of type Cn for n > 2. SO2n is of type Dn for

n > 3, and SO2n+1 is of type Bn for n > 2. Knowing the type of group gives a lot

of data about it. For example, the dimension of a maximal torus in a group G of

type Tn is n, where T = A, B, C, . . . .

Example 3.86. Let k be a field, V an n-dimensional k-vector space, and let h be

a positive definite hermitian form on V . Hence for some M ∈Mn we can write

h(v, w) = tv̄ ·M · w for all v, w ∈ kn

We define the group of k-linear automorphisms of V preserving the positive definite

hermitian form h, called the unitary group of h, as

U (h) =
{
A ∈Mn : tĀ ·M · A = M

}
In particular, if h is the standard inner product, then

U (h) =
{
A ∈Mn : tĀ = A−1

}
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We define the special unitary group of h as the subgroup of U (h) of automorphisms

of determinant 1, i.e

SU (h) = {A ∈ U (h) : detA = 1}

Now we exhibit an example of a non-linear algebraic group

Example 3.87. Elliptic curves. These are closed subsets of the projective plane P2.

If char k 6= 2, 3 such a group G can be defined as the set of all x = (x0, x1, x2) ∈ P2

such that

x0x
2
2 = x3

1 + ax1x
2
0 + bx3

0

where a, b ∈ k are such that the polynomial T 3 + aT + b has no multiple roots.

The neutral element e is (0, 0, 1), the point at infinity. The group operation of G is

abelian, and is often written additively. It is such that if three distinct points are

colinear, then their sum is e. If x = (x0, x1, x2) ∈ G, then −x = (x0, x1,−x2).

3.2 Diagonalizable Groups and Tori

Definition 3.88. Let G be a linear algebraic group. A homomorphism of algebraic

groups χ : G −→ Gm is called a rational character of G.

The set of rational characters of G is denoted byX∗(G), it has the natural structure

of abelian group, and the operation is often written additively. One can think of

the group of rational characters as sitting inside the group algebra ksep[G], i.e.

X∗(G) ⊂ ksep[G].

We define X∗(G) to be the set of homomorphisms of algebraic groups λ : Gm −→

G. Such a λ is called a multiplicative 1-parameter subgroup of G (1− psg of G).

If G is commutative, then X∗(G) has also a natural structure of abelian group. For

t ∈ Gm, and λ, µ ∈ X∗(G) we define

(λ+ µ)(t) = λ(t)µ(t), (−λ)(t) = λ(t)−1
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Definition 3.89. A linear algebraic group G which is isomorphic over ksep to a

closed subgroup of some group of diagonal matrices Dn is called diagonalizable. G

is an algebraic torus (or simply a torus) if it is isomorphic over ksep to some Dn.

Remark 3.90. In case G is diagonalizable, G is necessarily commutative and

consists of semisimple elements.

Example 3.91. Let T = Gm. If χ ∈ X∗(T ), then χ(t) = tm for some m ∈ Z.

Hence

X∗(Gm) ∼= Z

Lemma 3.92. If G is a connected algebraic group, then X∗(G) is torsion-free. In

particular if T is an n-dimensional torus, then X∗(T ) ∼= Zn.

Proof. If χ ∈ X∗(G), then χ(G) ⊂ Gm is a connected subgroup. But the only

connected subgroups of Gm are {0} and Gm itself. Thus for n > 0, nχ 6= 0 unless

χ = 0. Thus, X∗(G) is torsion-free.

Now, if T is an n-dimensional torus,

T ∼= Gm × · · · ×Gm︸ ︷︷ ︸
n times

so we have, X∗(T ) ∼= X∗(Gm)n ∼= Zn.

Theorem 3.93. Let G be a linear algebraic group. The following are equivalent:

a. G is diagonalizable.

b. X∗(G) is an abelian group of finite type, its elements generate ksep[G].

c. Any rational representation of G is a direct sum of 1-dimensional ones.

Proof. See [TS, Theorem 2.5.2] p.52.
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Corollary 3.94. Let H be a closed subgroup of the diagonalizable group G. Then

H is diagonalizable, and it is the intersection of the kernels of finitely many rational

characters of G.

Proof. See [TS, Corollary 2.5.3] p.53.

Proposition 3.95. If T is a torus, then X∗(T ) ×X∗(T ) −→ Z is a dual pairing

over Z.

Proof. If χ ∈ X∗(T ) and λ ∈ X∗(T ) define 〈χ, λ〉 ∈ Z by

χ (λ(x)) = x〈χ,λ〉

then 〈 , 〉 defines a perfect pairing between X∗(T ) and X∗(T ), i.e. any homomor-

phism X∗(T ) −→ Z is of the form χ 7−→ 〈χ, λ〉, where χ ∈ X∗(T ). Similarly for

X∗(T ).

3.3 Maximal Tori

Assume G is a connected solvable linear algebraic group. Define Gu = G ∩ Un,

where Un is the group of unipotent upper triangular matrices. Thus, Gu is a closed

normal subgroup which is nilpotent since Un is. Moreover, there is an injective

homomorphism of algebraic groups G/Gu −→ Tn/Un. Now, since Tn/Un is a

torus, all elements of G/Gu must be semisimple. Being connected, this group is a

torus.

Definition 3.96. A maximal torus of G is a subtorus which has the same dimen-

sion as the torus S = G/Gu.

A maximal torus is also a maximal torus in the set-theoretical sense, hence we may,

equivalently, define a maximal torus of G to be a closed subtorus of G of maximal

dimension.
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Proposition 3.97. If G is a semisimple algebraic group over k, then any two

maximal tori are conjugate over ksep.

Proof. See [TS, Theorem 7.2.6] p.159.

For a k-torus T , we denote byX∗k(T ) the subset ofX∗(T ) consisting of k-morphisms.

We have the following:

Definition 3.98. A maximal torus T is called k-split if X∗k(T ) generates k[T ],

equivalently, if T ∼=k Gm × · · · ×Gm; then T (k) ∼= k× × · · · × k×.

We say that an algebraic group G is split if it contains a split maximal torus.
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4. Skolem-Noether Type Theorems

In this chapter k will always be an arbitrary field, B will be a k-algebra, and A

a central simple algebra over k (denoted CSA over k from now on) of degree n.

For any k-algebra C and any field extension F/k we write CF for the F-algebra

obtained from C by extending scalars to F, so CF := C ⊗k F. Let ksep denote a

(fixed) separable closure of k, and let Γ denote the absolute Galois group of k, i.e.

Γ = Gal (ksep/k). Recall that if A is a k-algebra and B ⊆ A, then the centralizer

of B in A, denoted ZA(B), is the set of elements in A which commute with every

element of B, i.e. ZA(B) = {x ∈ A : xy = yx for all y ∈ B}.

4.1 Main Result

In this section our main goal is to extend the classical Skolem-Noether theorem

stated in 1.40 as follows:

Theorem 4.99. Let n be a fixed (positive) integer. Suppose that B is a k-algebra

such that Bsep has a unique faithful representation of degree n over ksep. Then

all the embeddings of B into a central simple k-algebra A are conjugate, i.e. if

ψ, ϕ : B −→ A are two embeddings, then there exists a ∈ A× such that ψ(b) =

aϕ(b)a−1 for all b ∈ B.

Proof. Fix an embedding B
i
↪→ A. Now, let ϕ : B −→ A be any other embedding.

We need to find an a ∈ A× such that ϕ(x) = axa−1 for all x ∈ B.

By hypothesis, we can find such an a ∈ A×ksep
since A×ksep

∼= Mn(ksep)
×, and Asep

has a unique representation of degree n.

Lemma 4.100. Let a, b ∈ A×. If axa−1 = bxb−1 for all x ∈ B, then b = az−1 for

some z ∈ ZA(B)×.
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Proof. Well, this is a straightforward computation.

axa−1 = bxb−1 for all x ∈ B =⇒ x = (a−1b)x(a−1b)−1 for all x ∈ B

=⇒ a−1b ∈ ZA(B)×, i .e., b = az−1

for some z ∈ ZA(B)×

What we need to show is that we can choose z in such a way that σ(b) = b for all

σ ∈ Γ where Γ = Gal(ksep/k). For x ∈ B we have ϕ(x) = axa−1 for some a ∈ A×ksep
.

So ϕ(σ(x)) = aσ(x)a−1 where σ ∈ Γ. But ϕ is k-linear, so ϕ(σ(x)) = σ(ϕ(x)).

Hence

aσ(x)a−1 = ϕ(σ(x)) = σ(ϕ(x)) = σ(axa−1) = σ(a)σ(x)σ(a)−1,

so aσ(x)a−1 = σ(a)σ(x)σ(a)−1, i.e.

σ(x) = (a−1σ(a))σ(x)(a−1σ(a))−1,

so a−1σ(a) ∈ ZA(B)×.

Now, to each σ ∈ Γ associate a continuous map c : Γ→ ZA(B)× given by cσ =

a−1σ(a). Note that cσ ∈ Z1(k, ZA(B)×) since

cσσcτ = (a−1σ(a))σ(a−1τ(a)) = a−1σ(a)σ(a−1)στ(a) = a−1στ(a) = cστ

What we want to do is show that cσ = 1 ∀σ ∈ Γ since then all embeddings of B

into A would be conjugate. This amounts to showing that H1(k, ZA(B)×) = {1}.

To accomplish this we filter the algebra through its radical.

Let Z = ZA(B)× and R = Rad(Zsep). Define

U := 1 +R and U (n) := 1 +Rn for n > 1

Let’s observe the following:
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a. U (n) ⊆ U (n−1) for every n > 2.

If x ∈ U (n) then x = 1 + rn for some r ∈ R, but Rn ⊆ Rn−1

so x = 1 + rn ∈ 1 + Rn ⊆ 1 +Rn−1 = U (n−1). Hence U (n) ⊆ U (n−1) for every

n > 2. Note that we now have a decreasing sequence:

U = U (1) ⊇ U (2) ⊇ · · · ⊇ U (n−1) ⊇ U (n) ⊇ · · ·

b. R is nilpotent, so there exists an N ∈ N such that U (n) = {1} ∀n > N . Hence

the sequence in (a) above is finite, it becomes

U ⊇ U (2) ⊇ · · · ⊇ U (n−1) ⊇ U (n) ⊇ · · · ⊇ U (N−1) ⊇ U (N) = {1} (4.7)

c. Every u ∈ U is invertible, i.e. if u ≡ 1 mod R, there is a v such that uv = 1.

Proof. Let u ∈ U , we have

−1 = (1− u)
∞∑

j=1

(1− u)j −
∞∑

j=1

(1− u)j

=
∞∑

j=1

(1− u)j − u
∞∑

j=1

(1− u)j −
∞∑

j=1

(1− u)j

hence −1 = −u
∞∑

j=1

(1− u)j, i.e. 1 = u
∞∑

j=1

(1− u)j. So take

v =
∞∑

j=1

(1− u)j

Lemma 4.101. U (n)/U (n+1) ∼= Rn/Rn+1 for every n > 1
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Proof. Define a map Φ: U (n) −→ Rn/Rn+1 by Φ(u) = u− 1. To see that Φ is a

homomorphism just note that

Φ(uv) = uv − 1 = (u− 1) + (v − 1)− (u− 1)(v − 1)

= (u− 1) + (v − 1)− (u− 1)(v − 1)

= Φ(u) + Φ(v)− Φ(u)Φ(v)

and Φ(u)Φ(v) ∈ R2n ⊂ Rn+1. Hence Φ(uv) = Φ(u) + Φ(v). Now we ask, what is

the kernel of Φ? Well, ker Φ =
{
u ∈ U (n) : Φ(u) ∈ Rn+1

}
so

ker Φ =
{
u ∈ U (n) : u− 1 ∈ Rn+1

}
=

{
u ∈ U (n) : u ∈ 1 +Rn+1

}
=

{
u ∈ U (n) : u ∈ U (n+1)

}
= U (n+1)

so ker Φ is exactly U (n+1).

To see that Φ is a surjection, for any 0 6= r̄ ∈ Rn/Rn+1 pick 1 + r ∈ U (n) and we

have Φ(1 + r) = (1 + r)− 1 = r̄. Hence Φ induces an isomorphism U (n)/U (n+1) ∼=

Rn/Rn+1.

Lemma 4.102. With the same notation as above, H1(k, U) = 0.

Proof. From lemma 4.101 we get the exact sequence

U (m+1) � U (m) � Rm/Rm+1

Now Rm/Rm+1 is just a vector space over ksep, so it is isomorphic to kM
sep whereM =

dimksep (Rm/Rm+1). In terms of linear algebraic groups this is just the additive

group Ga, which by the additive version of Hilbert’s Theorem 90, is cohomologically

trivial, i.e. H1(k,Ga) = 0. So looking at the H1 part of the associated sequence
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in cohomology we see:

H1(k, U (m+1)) −→ H1(k, U (m)) −→ H1(k,Rm/Rm+1) = H1(k,Ga) = 0

Also note that H1(k, U (N)) = 0, since U (N) = {1}, so from 4.7 we have

0 = H1(k, U (N))� H1(k, U (N−1))� · · ·� H1(k, U (2))� H1(k, U)

which gives H1(k, U (n)) = 0 ∀n > 1. Hence, in particular, when n = 1 we have

H1(k, U) = 0.

Now we put together all the information we have gathered so far. What we have is

U � Gm,Z � Gm,Z/R

and we look at the H1 part of the associated sequence in cohomology

H1(k, U)→ H1(k,Gm,Z)� H1(k,Gm,Z/R)

by lemma 4.102, H1(k, U) = 0 and we also have H1(k,Gm,Z/R) = 0. Hence we

have succeeded in “pinching” H1(k,Gm,Z) in between two cohomologically trivial

objects, so H1(k,Gm,Z) is trivial. We have shown that cσ = 1 for all σ ∈ Γ. So all

embeddings of B into A must be conjugate, and this proves theorem 4.99.

4.2 Examples

To effectively illustrate the result obtained above let us consider a couple of exam-

ples.

Example 4.103. If B is simple, then we are in the situation of the Skolem-Noether

theorem.

Example 4.104. We can take B to be an étale algebra of degree n.

Before we see some more examples let’s define the term Frobenius algebra. A very

detailed discussion on Frobenius Algebras may be found in [CR, Chapter IX].
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Definition 4.105. A finite dimensional algebra A over a field k is called a Frobe-

nius algebra if the left A-modules AA and (AA)∗ are isomorphic.

Definition 4.106. Let S be a subset of a finite dimensional algebra A over k. The

left annihilator `(S) of S is defined as

`(S) = {a ∈ A : aS = 0}

whereas the right annihilator r(S) of S is defined as

r(S) = {a ∈ A : Sa = 0}

The following theorem establishes the equivalence of several characterizations of

Frobenius algebras.

Theorem 4.107. Let A be a finite-dimensional k-algebra. Then the following state-

ments are equivalent:

1. A is a Frobenius algebra.

2. There exists a non-degenerate bilinear form f : A × A −→ k which is asso-

ciative, in the sense that f(ab, c) = f(a, bc) for all a, b, c ∈ A.

3. There exists a linear function λ ∈ A∗ whose kernel contains no left or right

ideals different from zero.

4. For all left ideals L and right ideals R in A we have

`(r(L)) = L, and (r(L) : k) + (L : k) = (A : k);

r(`(R)) = R, and (`(R) : k) + (R : k) = (A : k)

Proof. See [CR, p.415].

Lemma 4.108. Let A/k be a Frobenius algebra with associative bilinear form f .

Let 0 6= I  A be an ideal. Then I⊥ = {x ∈ A : f(b, x) = 0∀ b ∈ I} is also an ideal.
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Proof. Let a ∈ A , b ∈ I⊥. We need to show that ab ∈ I⊥. Let c ∈ I, then note

that ca ∈ I, since I is an ideal. Thus, we have

f(c, ab) = f(ca, b) = 0

Hence ab ∈ I⊥.

Proposition 4.109. If B has a unique faithful representation of degree n over

ksep, then B is a Frobenius algebra.

Proof. Suppose B has a unique faithful representation of degree n over ksep. Then

B∗ also has a unique faithful representation of degree n over ksep. Take a basis

for B∗, B∗ = λB. If there is a non-trivial ideal I ∈ kerλ, then (B/I)∗ ⊂ B∗. A

contradiction. So λ ≡ 0. Thus, B is a Frobenius algebra.

The converse is not true in general, but we have

Proposition 4.110. If B is a commutative Frobenius algebra, then B has a unique

faithful representation of degree degB over ksep.

Proof. Suppose first that B is a commutative Frobenius algebra, equipped with

form f , which is local. LetM be its maximal ideal. Let V be a faithful B-module

with dimV = dimB, then V ∼= B. For v ∈ V , define

Iv = AnnB(v) = {x ∈ B : xv = 0}

We need to check that there exists a non-zero vector v ∈ V for which Iv = 0. So, let

0 6= v ∈ V be such that dim Iv is minimal. We want to show that this dimension,

in fact, has to be zero. Suppose Iv 6= 0, then 0 6= I⊥v ( B is an ideal and hence

I⊥v ⊂ M, which in turn implies that M⊥ ⊂
(
I⊥v
)⊥

= Iv. Now, let n denote the
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nilpotency index ofM. Notice thatMn−1 ·M = 0, soMn−1 ⊂M⊥. This follows

since if x ∈Mn−1, and y ∈M, then

f(x, y) = f(1, xy) = f(1, 0) = 0

Thus, 0 6=Mn−1 ⊂M⊥ ⊂ Iv for all v. So, 0 6=Mn−1 ⊂
⋂

v Iv = ker (B −→ EndkV )

which is a contradiction since V is a faithful B-module. Therefore, if B is a (com-

mutative) Frobenius algebra which is local, then B has a unique faithful represen-

tation. Moreover, if B is any commutative Frobenius algebra, we can write

B = B1 × · · · ×Br

where each Bi is a local algebra. Let ei ∈ Bi (i = 1, . . . , r) be the corresponding

idempotents. If V is a faithful B-module with dimV = dimB, we can decompose

V =
⊕r

i=1 Vi where Vi = eiV for each i = 1, . . . , r. Hence each Vi contains a

faithful Bi-module, and so dimVi > dimBi for each i = 1, . . . , r. But,

r∑
i=1

dimVi = dimV = dimB =
r∑

i=1

dimBi

so dimVi = dimBi for each i. Hence V is the regular representation. This finishes

the proof of the proposition.

This proposition provides us with a vast array of examples since:

a. Every semi-simple algebra over a field is a Frobenius algebra.

Just take f(a, b) = Tr(ab), a non-degenerate associative form.

b. For any finite groupG, its group algebra A = k[G] over any field k is a Frobenius

algebra.

Define a linear function λ on A by

λ

(∑
g∈G

αgg

)
= α1
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where 1 is the identity element of G. Suppose that for some a ∈ A, Aa is in

kerλ. In particular we have

λ(g−1a) = 0 ∀g ∈ G

But since λ(g−1a) is the coefficient of g in a, we must have a = 0. Similarly,

we can show that aA ∈ kerλ implies a = 0. Thus, A is a Frobenius algebra.

Example 4.111. The group algebra of any abelian group.

Example 4.112. Let B be a local non-commutative Frobenius algebra. LetM be

its maximal ideal. If B/M is a field, then B has a unique faithful representation

of degree degB.

Proof. Let V be a faithful B-module of degree degB. For v ∈ V define Iv =

AnnB(v). Since V is a faithful B-module,
⋂

v Iv = 0. Hence

∑
v

I⊥v = B

i.e we can write 1 =
∑

v av for some av ∈ I⊥v . Thus, there is a v ∈ V such that

av /∈ M. Hence av is an invertible element, since B/M is a field. We also have

av ∈ I⊥v , which together with av being invertible implies that 1 ∈ I⊥v , thus B = I⊥v

and Iv = 0. Therefore, V is the regular representation.

Remark 4.113. Unlike in the proposition, there is no hope to generalize from the

local non-commutative case. Commutativity is required in the proposition.

If we look at the representations of S3 : 6 = 2(1)2 + 1(2)2, so we have two 1-

dimensional representations, C+ and the signature C−, and we have a 2-dimensional

representation, which we will call V . We have

C[S3] ∼= C× C×M2C −→ C+ ⊕ C− ⊕ V ⊕ V
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But note that χ = 2C+ ⊕ 2C− ⊕ V is a faithful representation different from the

regular representation.

Remark 4.114. If B is an algebra with no central idempotents other than 0 and

1, then B is not necessarily local.

Just take, for example, B =


 a b

0 c

 : a, b, c ∈ k

. Then note that B is not

local. In fact, B/RadB ∼= k × k and B has two maximal ideals,

C =


 0 a

0 b

 : a, b ∈ k


and

R =


 a b

0 0

 : a, b ∈ k


hence not local.

4.3 Embedding Simple Algebras

There is an underlying problem in theorem 4.99.

Question: What are the conditions for the existence of an embedding of B in A?

If B is a commutative Frobenius algebra, then the answer is given in [KM, Propo-

sition 3.4]. Here we will consider the case where B is a simple k-algebra.

Let k be a field, let B be a simple k-algebra of degree d, and let A be a CSA

over k of degree n. Denote by E the centralizer of B, Z(B). It is evident that a

necessary condition for the existence of an embedding B ↪→ A is that there exist

an embedding B ⊃ Z(B) = E ↪→ A. If E ↪→ A, then E ⊂ ZA(E) = A′ ⊂ A and

ZA(E) is a CSA over E.

Case 1: E = k, i.e. B is a CSA over k.

49



Recall that if B is a CSA over k and B ↪→ A, then B ⊗ ZA(B) ∼= A, and so

[ZA(B)] = [A]− [B] ∈ Br (k) (See Chapter 2, Cor 8.4 in [Ke]).

Proposition 4.115. There is an embedding B ↪→ A if and only if [A]−[B] ∈ Br (k)

is representable by an algebra of degree r = n/d.

Proof. If there is an embedding B ↪→ A, then B ⊗ ZA(B) = A, and so [ZA(B)] =

[A] − [B] ∈ Br (k) of degree n/d. On the other hand, if [A] − [B] ∈ Br (k) is

represented by an algebra [T ] of degree n/d, then [A]− [B] = [T ] ∈ Br (k) and so

A ∼= B ⊗ T , i.e. B is a subalgebra of A.

Case 2: General Case, i.e. B a simple k-algebra (with center possibly larger than k).

We have E −→ Endk(L) ∼= Mn(k), for any maximal k-algebra L satisfying k ⊂

E ⊂ L ⊂ A. Hence ZMn(E) is a matrix algebra over E, in fact, a central simple

algebra over E. Set C = Gm,ZMn (E)/Gm and C̄ = Gm,ZMn (E)/Gm,E. Consider

0 −→ C −→ Aut (Mn, E)
res−→ Aut (E) −→ 0 (4.8)

We also have the exact sequences,

0 −→ Gm −→ Gm,ZMn (E) −→ C −→ 0 (4.9)

Gm,E/Gm

g
� C

f
� C̄ (4.10)

From 4.9 we get an induced map in cohomology

H1(k, C)
δ1

−→ H2(k,Gm)
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The set H1(k, C) classifies embeddings E
ϕ
↪→ A, and the image of δ1 consists of

algebras containing E. If we extend scalars to E we have another exact sequence

of pointed sets,

0 −→ Gm
ı−→ Gm,E −→ Gm,E/Gm −→ 0 (4.11)

From (4.10) we get an associated sequence in cohomology;

If β ∈ Z1(k, C), let γ ∈ Z1
(
k, C̄

)
be the image of β. Then there is a natural

bijection between the fiber of

H1(k, C)
f]

−→ H1(k, C̄)

over [γ] and the orbit set of the group(
C̄γ

)Γ
acting on H1(k,Gm,E/Gm)

From sequences (4.10) and (4.11) we get a commutative diagram

0 0y y
H1(k,Gm,E/Gm) Br (E/k)

g]

y y
H1(k, C)

δ1

−−−→ H2(k,Gm)

f]

y yı]

H1(k, C̄)
δ1
E−−−→ H2(k,Gm,E)y y

H2(k,Gm,E/Gm) H2(k,Gm,E/Gm)
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The maps f ] and ı] are defined by

f ]
(
[E

ϕ
↪→ A]

)
= [ZA(ϕE)]

ı]([A]) = [A⊗ E]

Theorem 4.116. There exists an embedding E ↪→ A if and only if the class of

A⊗E in Br (E) is represented by the class of a central simple algebra N of degree

degA/[E : k].

Proof. The only if part is clear. To prove the other direction, choose [T ] ∈ H2(k,Gm),

then [T ⊗ E] ∈ H2(k,Gm,E). Now T ⊗ E contains E, so it comes from H1(k, C̄).

On the other hand, it goes to zero in H2(k,Gm,E/Gm) so it is in the image under

f ] of some [c] ∈ H1(k, C). Hence δ1 ([c]) = [T ] + [d] for some [d] ∈ Br (E/k). But

the action

H1(k, C)
f]

−→ H1(k, C̄)

is transitive so, if we take a representative α ∈ Z1(k, C) of [c], and β ∈ Z1(k,Gm,E/Gm)

a representative of [d], then αβ−1 ∈ Z1(k, C) since (4.10) is a central extension.

Now, since δ1 is a homomorphism,

δ1 ([αβ−1]) = δ1 ([α])− δ1 ([β]) = [T ] + [d]− [d] = [T ]

Thus we obtain our original class.
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5. Algebras with Involutions

In this chapter B will always be a k-algebra with involution σ, and A a CSA over

k of degree n with involution τ central over k or over a quadratic extension of k

if τ is of type II (unitary). Given two embeddings f, g : (B, σ) −→ (A, τ) we wish

to know whether there exists a ϕ ∈ Aut(A, τ) such that the diagram,

(B, σ)
f−−−→ (A, τ)∥∥∥ yϕ

(B, σ) −−−→
g

(A, τ)

commutes, i.e. we want to classify embeddings which are in the same conjugacy

class.

Let X be the set of all embeddings of (B, σ) into (A, τ). So, if f ∈ X , then f is a

homomorphism of B into A with f ◦ σ = τ ◦ f . The automorphism group of (A, τ)

is the group scheme over k given by

Aut(A, τ)(R) = {α ∈ Aut(A⊗R) : α ◦ τ = τ ◦ α}

for any commutative k-algebra R. For any algebra with involution (A, τ) we define

U(A,τ) =
{
u ∈ Gm,A : uτ(u) = 1

}
Using the Skolem-Noether theorem, one sees that there is an exact sequence

0 −→ U(A,τ) ∩Gm −→ U(A,τ) −→ Aut (A, τ) −→ 0 (5.12)

To shorten the notation let us set G = Aut(A, τ). Hence G acts on X naturally,

by composition. Let Γ = Gal(ksep/k). Let’s fix f ∈ X Γ, i.e. f is a k-embedding of

(B, σ) into (A, τ). We will adopt the notation Gf for the G-orbit of f and Gf for
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the stabilizer of f in G. Hence

Gf = StabGf = {ϕ ∈ G : ϕ ◦ f = f}

= {u ∈ ZA(f(B)) : uτ(u) = 1} /
(
Gm ∩ U(A,τ)

)
= {u ∈ ZA(B) : uτ(u) = 1} /

(
Gm ∩ U(A,τ)

)
the latter by identifying B with its image under f . We also have,

Gf = OrbitG(f) = {ϕ ◦ f | ϕ ∈ G}

It is well-known that if two elements are in the same G-orbit, then their respective

stabilizers are conjugate. We have the exact sequence of pointed sets

1 −→ Gf ↪→ G
◦f−→ Gf −→ 1

ψ 7−→ ψ

ϕ 7−→ ϕ ◦ f

And we look at its associated sequence in cohomology

· · · −→ GΓ = G(k) −→ (Gf)Γ −→ H1(k,Gf ) −→ H1(k,G) (5.13)

Recall from 1.17 that the orbit set of G(k) in (Gf)Γ, i.e. the k-conjugacy classes of

elements of (Gf)Γ are in a natural bijection with ker
(
H1(k,Gf )

i]−→ H1(k,G)
)
.

So what we will do is study ker i] in order to better understand the k-conjugacy

classes of elements of (Gf)Γ.

Let us assume for now that τ is an involution of the first kind on A. Set U =

U(A,τ) =
{
u ∈ Gm,A : uτ(u) = 1

}
and G = Aut (A, τ), which we shall identify with

U/ {±1}. Then Gf = U(Z,τ)/ {±1}, where Z = ZA(B) and we have the sequences

of pointed sets,
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1 −→ {±1} −→ U −→ G −→ 1

and

1 −→ {±1} −→ U(Z,τ) −→ Gf −→ 1

From these we get

H1(k, U(Z,τ)) −−−→ H1(k, U) −−−→ H1(k,Gm,A)y y y
H1(k,Gf )

i]−−−→ H1(k,G) −−−→ H1(k,AutA)y yδ1

y
H2(k, {±1}) H2(k, {±1}) −−−→ H2(k,Gm)

In particular, note that we must have ker i] ⊆ H1(k, U(Z,τ)). So, if H1(k, U(Z,τ)) =

{1}, then ker i] = {1} and hence all the embeddings of (B, σ) into (A, τ) must be

conjugate.

Lemma 5.117. The connecting homomorphism

δ1 : H1(k,G) −→ H2(k, {±1})

sends the class of (A′, τ ′) to the class of [A′]− [A] in Br (k).

Proof. This follows from the well-known fact that

H1(k,Aut (A))
δ1

−→ H2(k,Gm)

is given by [A′] 7−→ [A′]− [A].

Lemma 5.118. Let k be a field of characteristic different from 2. Let Z be a k-

algebra with involution τ . If a ∈ Z×sep is fixed by the involution, then a = τ(b)b for

some b ∈ Zsep.

Proof. Let’s break the proof up into two cases.

Case 1: Z is semisimple.
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We can decompose Zsep as

(Mn1 ×Mn2)× · · · × (Mnq−1 ×Mnq)×Mm1 × · · ·Mmr

Note that the involution could come from a hyperbolic, symplectic, or an orthogo-

nal form. In case the involution comes from a hyperbolic form, there is no problem

since there is only one such. If the involution comes from a symplectic form, it is

well known that there is only one symplectic form over any given degree. The only

problem would be an orthogonal involution, but over a (fixed) separable closure,

again, there is only one. Now on the “pairs” above what we have is essentially the

exchange involution, so an element is fixed if and only if it has the form (x, xt) for

some x. But we can write this as

(x, xt) = (1, xt)(x, 1) = τ ((x, 1)) (x, 1)

and clearly (x, 1) ∈ Zsep.

Case 2: Z any k-algebra.

We know that Zsep/RadZsep is semisimple. By the first case, there is a b1 ∈ Zsep

such that a ≡ τ(b1)b1 (mod RadZsep). We need to show that we can “lift” this

partial approximation from the radical all the way up to Zsep. We proceed à la

Hensel. Suppose that a ≡ τ(bn)bn (mod (RadZsep)
n) and we’ll show it for n + 1.

Suppose bn+1 = bn + c for some c ∈ (RadZsep)
n yet to be determined. Now, we

need a ≡ τ(bn+1)bn+1 (mod (RadZsep)
n+1). Thus, let us see what we need:

τ(bn+1)bn+1 = τ(bn + c)(bn + c)

= (τbn + τc)(bn + c)

= τ(bn)bn + τ(bn)c+ τ(c)bn + τ(c)c

= a− r + τ(bn)c+ τ(c)bn + τ(c)c
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The latter equality is for some r ∈ (RadZsep)
n since a ≡ τ(bn)bn (mod (RadZsep)

n).

Note that τ(c)c ∈ (RadZsep)
2n, so for n > 1, τ(c)c ≡ 0 (mod (RadZsep)

n+1).

Hence, what we need is to be able to solve the congruency

τ(bn)c+ τ(c)bn ≡ r (mod (RadZsep)
n+1)

for c. Note that

1. τ(bn)c+ τ(c)bn is fixed by τ .

2. Since bn is invertible,

`bn : (RadZsep)
n −→ (RadZsep)

n

(left multiplication by bn) is an isomorphism.

Thus, it is enough to see that

r ≡ s+ τ(s) (mod (RadZsep)
n+1)

for some s ∈ (RadZsep)
n. But, since char k 6= 2, we can just take s = r

2
to solve

the latter.

Proposition 5.119. Let (B, σ) and (A, τ) be as above. Suppose that B has a

unique faithful representation of degree degA over ksep. Then any two embeddings

of (B, σ) into (A, τ) are conjugate over ksep, i.e the action of G on X is transitive.

Proof. Let f, g : (B, σ) −→ (A, τ) be two embeddings. If we “forget” about the

involutions we know that by theorem 4.99 there exists an a ∈ A× such that f(x) =

ag(x)a−1 for all x ∈ B. Is this compatible with the involutions? There’s only one
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way to find out. For x ∈ B we have

ag(σx)a−1 = f(σx)

= τ(fx)

= τ(ag(x)a−1)

= τ(a−1)τ(gx)τ(a)

= τ(a−1)g(σx)τ(a)

so ag(σx)a−1 = τ(a−1)g(σx)τ(a), hence g(σx) = a−1τ(a−1)g(σx)τ(a)a so z =

τ(a)a ∈ ZA(B) = Z. Now write τ(a)a = τ(b)b with b ∈ Z×sep (in general b is not

rational over k). Then u = ab−1 ∈ G and ug(x)u−1 = f(x) for all x.

Corollary 5.120. Let f : (B, σ) −→ (A, τ) be a fixed embedding, and let

Gf = {ϕ ∈ Aut (A, τ) : ϕ ◦ f = f}

then 5.119 tells us that the cohomology set H1(k,Gf ) classifies the embeddings

ϕ : (B, σ) −→ (A′, τ ′) where (A′, τ ′) are algebras with involution isomorphic to

(A, τ) over ksep. The embeddings ϕ : (B, σ) −→ (A, τ) are classified by

ker
(
i] : H1(k,Gf ) −→ H1(k,Aut (A, τ))

)
where i : Gf −→ Aut (A, τ) is the inclusion map.

Lemma 5.121. Let (A, τ) be a CSA over k with involution, and e ∈ A an idem-

potent such that e + τ(e) = 1. Set B = ke + kτ(e). Then U(B,τ) = Gm and

ZA(B) = Ze+ Zτ(e).

Proof. (i) Recall that UB =
{
u ∈ Gm,B : uτ(u) = 1

}
. Let u ∈ U(B,τ) and write

u = ve + wτ(e), where v, w ∈ ksep. The condition uτ(u) = 1 is equivalent to

vw = 1, so U(B,τ) = Gm.
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(ii) Certainly, e and τ(e) belong to ZA(B), hence ZA(B) ⊇ Ze + Zτ(e). So, in

particular ZA(B) ∼= (W×W op, τ) for someW . Now, take any element z1e+z2τ(e) ∈

Ze+Zτ(e), we must show that it commutes with every element of B = ke+kτ(e),

but this is clear since e and τ(e) commute with each other.

Example 5.122. Let (A, τ) be a CSA over k of even degree 2n with involution

τ . Then there is at most one U(A,τ)(k)-conjugacy class of idempotents e ∈ A such

that e+ τ(e) = 1.

Proof. Let B = ke + kτ(e). Note that Bsep has only one representation of degree

2n that is self-dual; this is enough to guarantee that G acts transitively on X . So

we can use corollary 5.120. Now Z = ZA(B) decomposes as Y × Y ′ with the two

factors interchanged by the involution, so U(A,τ)
∼= Gm,Z . We have

H1(k, U(Z,τ)) −−−→ H1(k,Gm,A)y y
H1(k,Gf )

i]−−−→ H1(k,Aut (A, τ))y yδ1

H2(k, {±1}) H2(k, {±1})

If an element lies in ker(i]), then it is also in ker δ1. Since we have equality in the

bottom row, this element must come from H1(k, U(Z,τ)) which is trivial.
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6. Conjugacy Classes of Maximal k-Tori

6.1 General Results

Let G be a semi-simple (linear) algebraic group defined over a field k. Let G̃ be its

universal cover, and let T ⊂ G be a fixed maximal k-torus.

It is well-known that over a separable closure of k all maximal tori are conjugate.

We are interested in determining which maximal k-tori of G are k-conjugate to a

fixed maximal torus T . To this effect, we will develop a general set-up to enable

us to study k-conjugacy classes. We will mainly use the tools provided by Galois

Cohomology. In the case where G = U(A,σ), where (A, σ) is a central simple algebra

with involution, we can make this general set-up more explicit. This case is essen-

tially the general case when G is a classical simple group, by virtue of a theorem

of André Weil in [We, p.597].

Let N = NG(T ) = {x ∈ G : xTx−1 ⊂ T} denote the normalizer of T in G, let

Z = ZG(T ) denote the centralizer of T in G, and let W = W (T ) = N/T denote

the Weyl group of G relative to T , a finite group.

Since all maximal tori are conjugate over a separable closure, the set of all maximal

tori is parametrized by the homogeneous space G/N . So we have

G/N ←→ set of maximal tori in G

It is readily seen that this bijection commutes with the action of Γ, so if we want

the set of maximal k-tori, then we let Γ act on G and look at the fixed points. We

have

(G/N)Γ ←→ set of maximal k-tori in G

If in addition we want the k-conjugacy classes of maximal k-tori then we look at

the action of GΓ = G(k) on G/N . We have
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(G/N)Γ /GΓ ←→ set of k-conjugacy classes of maximal k-tori in G

It is this latter relation that we want to exploit. We will use Galois Cohomology to

understand and give explicit descriptions of these k-conjugacy classes in particular

examples. As a starting point, consider the exact sequences

1 −→ T −→ N
π−→W −→ 1 (6.14)

1 −→ T
iT−→ G −→ G/T −→ 1 (6.15)

1 −→ N
iN−→ G −→ G/N −→ 1 (6.16)

From sequence 6.16 above we get the associated sequence in cohomology:

GΓ −→ (G/N)Γ −→ H1(k,N)
(iN )]

−→ H1(k,G) (6.17)

By the general theory of Galois Cohomology there is a one-to-one correspondence

between the orbit set of GΓ in (G/N)Γ, namely (G/N)Γ /GΓ and ker(iN)]. First

note that this kernel sits inside of H1(k,N). By the remarks just made, ker (iN)]

is in one-to-one correspondence with the k conjugacy classes of maximal k-tori.

We thus want to study ker (iN)] to better understand and be able to compute

k-conjugacy classes of maximal tori.

One of the invariants we are interested in arises when considering the sequence in

cohomology associated to sequence (6.14). We have

W Γ −→ H1(k, T ) −→ H1(k,N)
π]

−→ H1(k,W ) (6.18)

We will want to study those classes in H1(k,N) that are taken by π] to zero in

H1(k,W ). Note that ker(iT )] is contained in these. By abuse of notation, we de-

note by π] : ker(iT )] −→ H1(k,W ) the restriction of π] to ker (iT )].

If we consider the covering map ρ : G̃ −→ G and its kernel, ker ρ, we have the exact

sequence
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1 −→ ker ρ −→ G̃
ρ−→ G −→ 1

Recall that ker ρ is a finite abelian group. Let T̃ be the inverse image of T under

the covering map ρ, i.e. T̃ = ρ−1(T ). Note that ker ρ ⊂ T̃ , so we have:

1 −→ ker ρ −→ T̃
ρ−→ T −→ 1

and we obtain the commutative diagram

ker ρ ker ρy y
T̃ −−−→ G̃

q

y yq

T −−−→ G

and looking at its associated sequence in cohomology we have

H1(k, T̃ ) −−−→ H1(k, G̃)y y
H1(k, T )

i]−−−→ H1(k,G)

δ1

y yδ1

H2(k, ker ρ) H2(k, ker ρ)

We can restrict ourselves to studying ker(i]) since W = N/T is finite.

Proposition 6.123. With notation as above ker(i]) ⊂ ker δ1.

Proof.

[S] ∈ ker(i]) ⇒ i][S] = e

⇒ (δ1 ◦ i])[S] = e

⇒ δ1[S] = e since the diagram commutes

⇒ [S] ∈ ker δ1
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Proposition 6.124. If in addition we have H1(k, G̃) = 0, then equality holds, i.e.

ker i] = ker δ1.

Proof. Let [S] ∈ ker δ1, so δ1[S] = e and hence
(
δ1 ◦ i]

)
[S] = e, but there is only

one element in each fiber since H1(k, G̃) = 0. Hence i][S] = e, i.e. [S] ∈ ker i].

We are interested in this relation since δ1 has the extra structure of being a group

homomorphism. It is known that the condition H1(k, G̃) = 0 holds for all classical

groups and some exceptional groups when cd (k) 6 2. For this see [BP1] and [BP2].

We will record what we have shown as a theorem for future reference.

Theorem 6.125. ker(iT )]/W (k) is in one-to-one correspondence with the set of

k-conjugacy classes of maximal tori S with π](S) = e, where π] is the restriction

of π] to ker (iT )].

The preceding formalism can be applied very effectively (to describe k-conjugacy

classes) in the case where G is the unitary group of an algebra with involution.

Later we will see that in this case we can interpret the map π] in terms of étale

algebras.

This generalizes the work of Kariyama in [Ka] for classical groups split over k. We

will see that in this situation we can always associate to any torus T a certain class

of étale algebras with involution.

Example 6.126. Let k be a field with char k 6= 2, and let G = SO(q) be the

special orthogonal group of a non-degenerate quadratic form q on a vector space

V of dimension 2n over k. For G = SO(q) we have G̃ = Spin(q) a connected

two-sheeted covering and thus ker ρ = Z/2Z. These yield the exact sequence

1 −→ Z/2Z −→ Spin(q)
ρ−→ SO(q) −→ 1

Let T ⊂ G be a (fixed) maximal k-torus. Then, we can associate to T the étale
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algebra E = ET = ZEndk(V )(T ) consisting of k-endomorphisms of V that commute

with T equipped with the involution ν, induced by the adjoint involution of q. If

F = Eν , the subalgebra of elements of E fixed by the involution ν, then dimF =

1
2
dimE as we will see in 6.139, and we can write E = F [X]/(X2 − D) for some

D ∈ F×. Viewing E this way we realize ν as X 7−→ −X. Also we may recover T as

the kernel of the norm map from the multiplicative group of E to the multiplicative

group of F .

T ∼= UE/F = ker(NE/F : Gm,E −→ Gm,F )

Notice that now we have two exact sequences involving T ,

1 −→ Z/2Z −→ T̃ −→ T −→ 1 (6.19)

and

1 −→ T −→ Gm,E

NE/F−→ Gm,F −→ 1 (6.20)

The exact sequence (6.20) induces an isomorphism

H1(k, T ) ∼= F×/NE/F (E×)

With this identification it has been shown in [BKM] that

δ1 : H1(k, T ) −→ Br(k) (6.21)

is given by δ1(a) = CorF/k(a,D). With all this information we get a commutative

diagram

H1(k, T )
δ1

−−−→ H2(k,Z/2Z)

o
y yo

F×/NE/F (E×) −−−→ Br(k)
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Note that here W Γ = Autk(E, ν), the k-automorphisms of E that commute with

ν, and so we get a surjective map

k-conjugacy classes of maximal k-tori S with (ES, ν) ∼= (EUE/F
, ν)y{

a ∈ F×/NE/F (E×) : Cor (a,D) = 0
}
/W Γ

For this map to be injective we need H1(k,Spin(q)) = 0. We will give necessary

conditions for this in theorem 6.140. This takes care of SO(q) for the moment. We

will come back to it in the next section.

Lemma 6.127. Let L/k be a quadratic field extension, let E ⊇ L be an étale

algebra over k equipped with an involution σ (of any kind), such that σ|L is non-

trivial (⇐⇒ L∩Eσ = k), and let F = Eσ. Consider V = E as a finite dimensional

L-vector space. For b ∈ F× define hb : E × E −→ L by hb(x, y) = TrE/L (bxσ(y)).

Then hb is a hermitian form on E (with respect to σ) invariant under UE/F ={
u ∈ Gm,E : uσ(u) = 1

}
.

Proof. Let x, y ∈ E, α, β ∈ L, and u ∈ UE/F be arbitrary. To show that hb

is a hermitian form on E we need to show that σhb(x, y) = hb(y, x) and that

hb(αx, βy) = αhb(x, y)σ(β). This is a straightforward computation that we do as

follows:

σhb(x, y) = σTrE/L (bxσ(y))

= TrE/L (σ(bxσ(y)))

= TrE/L (yσ(x)σ(b))

= TrE/L (byσ(x))

= hb(y, x)
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hb(αx, βy) = σhb(βy, σx)

= σTrE/L (bβyσ(αx))

= σ
(
βTrE/L (byσ(αx))

)
= σTrE/L (byσ(αx))σ(β)

= TrE/L (bαxσ(y))σ(β)

= αTrE/L (bxσ(y))σ(β)

= αhb(x, y)σ(β)

So hb is a hermitian form. To see that it is invariant under UE/F note

hb(ux, uy) = TrE/L (buxσ(uy))

= TrE/L (bxσ(y)uσ(u))

= hb(x, y)

Remark 6.128. To talk about TrE/L we need E free over L. If L is a field, there

is no problem. If L = k× k, then E = Ee+Ee∗ and the involution ∗ interchanges

the idempotents, so these idempotents have the same rank. This essentially says

that E is free over L.

Recall that a non-singular hermitian form h on a finite dimensional vector space V

defined over a quadratic field extension L of a field k with non-trivial automorphism

i, yields the adjoint involution σh on EndLV defined by the relation

h(x, f(y)) = h(σh(f)(x), y)

for f ∈ EndLV and x, y ∈ V . In particular, σh(α) = i(α) for α ∈ L, so σh is an

involution of the second kind.
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Example 6.129. Let G = SU(h) (= SU(V, h)), the special unitary group of a

hermitian form h defined on an L-vector space, where L is a quadratic field exten-

sion over k.

Question: What are the maximal k-tori for G = SU(h)?

Well, we would like to use the same machinery as in the previous example, but

SU(h) is simply-connected unlike SO (q), i.e. S̃U(h) = SU(h) so we take a different

approach. If we have an étale algebra E/k as in the lemma above, then

Claim 6.130. UE/F is a maximal k-torus.

Proof. We claim that over the algebraic closure of k we must have
(
Gm,E

)n ∼=
UE/F . To see this, consider the map

ϕ :
(
Gm,E

)n −→ UE/F

t = (t1, t2, . . . , tn) 7−→ (t1, t
−1
1 , t2, t

−1
2 , . . . , tn, t

−1
n )

The map ϕ is clearly surjective and

kerϕ =
{
t ∈

(
Gm,E

)n
: ϕ(t) = (1, . . . , 1)

}
=

{
t ∈

(
Gm,E

)n
: ti = 1 ∀ i = 1, . . . , n

}
= {1}

To see that it is a homomorphism note that

ϕ(ts) = ϕ(t1s1, . . . , tnsn) = (t1s1, s
−1
1 t−1

1 , . . . , tnsn, s
−1
n t−1

n )

= (t1s1, t
−1
1 s−1

1 , . . . , tnsn, t
−1
n s−1

n )

= (t1, t
−1
1 , . . . , tn, t

−1
n )(s1, s

−1
1 , . . . , sn, s

−1
n )

= ϕ(t)ϕ(s)

Hence UE/F is a k-torus, and moreover it is maximal for dimensional reasons.
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For the étale algebra E we may take E = ET = EndT (V ⊗k ksep)
Γ and this algebra

comes equipped with the adjoint involution σh.

It is easy to calculate H1(k, UE/F ) from the exact sequence

1 −→ UE/F −→ Gm,E −→ Gm,F −→ 1

Its exact sequence in cohomology yields H1(k, UE/F ) ∼= F×/NE/F (E×). If h is of

rank n, then W (k) ∼= Autk(F, σ) ∼= AutL(E, σ), where Autk(F, σ) is the group of

k-automorphisms of F that commute with the involution σ, i.e.

Autk(F, σ) = {α ∈ Autk(F ) : α ◦ σ = σ ◦ α}

and

AutL(E, σ) = {α ∈ AutL(E) : α ◦ σ = σ ◦ α}

Lemma 6.131. Keeping the same notation as above. If h is of rank n, then

W Γ ∼= Autk(F, σ) ∼= AutL(E, σ)

Proof. The first isomorphism is clear. The isomorphism between the automorphism

groups is given by the restriction map,

Res : AutL(E, σ) −→ Autk(F, σ)

taking f to f |F . This is clearly a homomorphism. To see that it is injective, note

that if Res(f) = idF , then Res(f) fixes pointwise both L and F . Hence it fixes

F ⊗k L, but E = F ⊗k L since dimk (F ⊗k L) = 2n = dimk E and F ⊗k L ⊆ E.

Thus f = idE. It is also clear that every k-automorphism of F extends uniquely

to a unique L-automorphism of E.

Lemma 6.132. If T ⊂ SU(h) is a maximal k-torus, then T ∼= UE/F for some étale

algebra E over k, and h ∼= hE,b for some b ∈ F×.
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Proof. We can associate to T the étale algebra ET = EndT (V ⊗k ksep)
Γ of endo-

morphisms fixed by the action of Γ, together with the adjoint involution σh, where

ksep denotes a fixed separable closure of k and Γ = Gal (ksep/k). It is worth noting

here that (ET , σh) ⊂ (EndV, σh). We want to show that

T 7−→ ET

induces a set bijection. Thus, giving an explicit correspondence between maximal

tori and a class of étale algebras with involution, namely, n-dimensional subalgebras

(E, σh) of (EndV, σh). If T is a maximal k-torus, then it is preserved by the action

of Γ, so we have our T ⊂ ET ⊗k ksep. Moreover, T ⊂ SU(h), so T ⊂ UE/F . Since

T is maximal equality must hold. In the other direction, if (E, σh) is a subalgebra

of (EndV, σh) just take T =: UE/F , which we’ve already shown to be a maximal

k-torus.

Furthermore, we’ll say that ET is “h-admissible” if h ∼= hET ,b for some b ∈ F×.

Recall that

a deth = det(h(ei, ej)) ·NL/k(L
×) where (h(ei, ej))16i,j6n is the Gram matrix of h

with respect to an arbitrary basis (e1, . . . , en).

b The determinant of a hermitian form h : L×L −→ k is an invariant modulo the

norms of L over k.

Claim 6.133. dethE,b = NF/k(b) · disc(F/k)

Proof. Notice that we can decompose E as a tensor product E = F ⊗k L. From F

we pick up, basically, TrE/L (xy) and from L we get HL where HL(x, y) = xȳ.

Claim 6.133 finishes up the proof of lemma 6.132.
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We have seen that H1(k, UE/F ) ∼= F×/NE/F (E×) and so the natural map

H1(k, UE/F ) −→ H1(k, SU(h))

is given by a 7−→ ha(x, y) = h(ax, y) where a ∈ F×/NE/F (E×).

Remark 6.134. ha(x, y) and h(ax, y) have the same determinant.

Proposition 6.135. The set of k-conjugacy classes of maximal tori S with (ES, σh) ∼=

(EUE/F
, σh) is in one-to-one correspondence with

{
a ∈ H1(k, UE/F )/W Γ : ha

∼= h
}

Proof. Just consider the commutative diagram:

W Γy
H1(k, UE/F ) H1(k, UE/F )

o
y y

F×/NE/F (E×) −−−→ H1(k, SU(h))y
H1(k,N)

Example 6.136. Let G = SU(h) (= SU(V, h)) where h is a hermitian form over

a skew-field D/k. Let T0 ⊂ G be a fixed maximal k-torus. Associate to T0 the

algebra ET0 = ZEndDV (T0). Let F be the algebra consisting of elements fixed by

the adjoint involution σh. Let N = NG(T0) denote the normalizer of T0 in G and

W = W (T0) = N/T0 denote the Weyl group of T0.

Claim 6.137. ET0 is an étale algebra.
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Proof. Let X∗(T0) denote the character group of T0. Over a separable closure, we

may break up V as

Vsep =
⊕

χ∈X∗(T0)

Vχ

Note that Vχ = ∅ for most χ ∈ X(T0) and if Vχ 6= ∅, then dimVχ = 1. Hence

dimV = dimE, and so we have Esep =
∏
ksep, an étale algebra.

Claim 6.138. UET0
= T0

Proof. Clearly, T0 ⊂ UET0
so by maximality, equality must hold.

Lemma 6.139. Let A be any central simple algebra over k of even dimension,

equipped with an involution σ, and E ⊂ A a maximal étale algebra stable under

σ. Let F be the subalgebra of E consisting of elements fixed by the involution σ.

Then, dimF = 1
2
dimE.

Proof. It is enough to show this over a separable closure of k. Now, an involution

can be either of the first kind, i.e. orthogonal or symplectic; or of the second kind,

i.e. unitary. Say dimE = m = 2n. Let S =

 0 In

−In 0

, and H =

 0 In

In 0


(we use H since it is a hyperbolic quadratic form). Define

σS(x) = S−1xtS, σH(x) = H−1xtH and ε(x, y) = (yt, xt)

Note that over a separable closure ksep of k we have

(A⊗ ks, σ) ∼=


(Mm, σS) if σ is symplectic

(Mm, σH) if σ is orthogonal

(Mn ×Mn, ε) if σ is unitary

Case 1: σ is of the first kind.

If σ is of the first kind, note that over a separable closure,
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E = {diag(x1, . . . , xn, y1, . . . , yn)}

We can also see that

σH (diag(x1, . . . , xn, y1, . . . , yn)) = diag(y1, . . . , yn, x1, . . . , xn)

and

σS (diag(x1, . . . , xn, y1, . . . , yn)) = diag(y1, . . . , yn, x1, . . . , xn)

Thus if F consists of elements fixed by the involution, then

F = {diag(x1, . . . , xn, x1, . . . , xn)}

Therefore, dimF = 1
2
dimE.

Case 2: σ is of the second kind.

If σ is of the second kind, note that over a separable closure, E = B × B, and

since ε(x, y) = (yt, xt) if an element is to be fixed by the exchange involution, then

it must have the form (x, xt), so F = {(x, xt) : x ∈ B}, but this is isomorphic to

one copy of B, and hence dimF = 1
2
dimE.

Note that we have two exact sequences:

1 −→ T0 −→ Gm,E

NE/F−→ Gm,F −→ 1

From this we get the sequence in cohomology

· · · −→ E× −→ F× −→ H1(k, T0) −→ 0

the first isomorphism theorem yields H1(k, T0) ∼= F×/NE/F (E×) and the second

exact sequence we’ll use is

1 −→ Gm,F −→ Gm,E −→ T0 −→ 1

The first map is just the inclusion and the second map sends x to xσh(x)
−1, where

σh is the adjoint involution associated to our hermitian form h. The associated

sequence in cohomology is

· · · −→ 0 −→ H1(k, T0) −→ H2(k, F ) −→ H2(k,E)

which yields an isomorphism H1(k, T0) ∼= Br (E/F ). Thus we have found an iso-
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morphism F×/NE/F (E×) ∼= Br (E/F ). This isomorphism can be given explicitely

by

a ∈ F×/NE/F (E×) 7−→ CorE/F (a,M)

where E = F [t]/(t2 −M) for M ∈ F×. Thus we have found two equivalent ways

to study the conjugacy class of maximal tori isomorphic to T0 over the algebraic

closure, k̄.

6.2 cd (Γk) 6 2

In the previous section we established the commutativity of the diagram:

H1(k, T̃ ) −−−→ H1(k, G̃)y y
H1(k, T )

i]−−−→ H1(k,G)

δ1

y yδ1

H2(k, ker ρ) H2(k, ker ρ)

and we proved in proposition 6.123 that ker(i]) ⊂ ker δ1. In proposition 6.124 we

showed that equality holds provided H1(k, G̃) = 0. This is of interest as δ1 has the

added advantage of being a group homomorphism. For this equality we need:

Theorem 6.140 (E. Bayer-Fluckiger, R. Parimala). Let k be a perfect field

of cd(Γk) 6 2. Let G̃ 6= trialitarian form be a semisimple simply connected classical

group defined over k. Then H1(k, G̃) = 0.

Theorem 6.141 (E. Bayer-Fluckiger, R. Parimala). Let k be a perfect field of

virtual cohomological dimension 6 2, and let G̃ be a semisimple, simply connected

group of classical type, or of type G2 or F4. Then the natural map,

H1(k, G̃) −→
∏

v

H1(kv, G̃)
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is injective, where v runs over the orderings of k and where kv denotes the real

closure of k at v.

Notice that theorem 6.140 is a special case of theorem 6.141. This is because the

product on the right hand side is an empty product and the map being injective

is equivalent to H1(k, G̃) collapsing, i.e. H1(k, G̃) = 0.

There is one situation worth noting here. If G itself happens to be simply con-

nected then G = G̃, and we have H1(k,G) = H1(k, G̃) = 0 and so ker(i]) =

ker δ1 = H1(k, T ). This is the case when, for example, G = Sp2n, SLn, or SU(h).

If k is a field of cohomological dimension at most 2. We have the following im-

provements to our results.

In example 6.126 we get a bijection

{
a ∈ F×/NE/F (E×) : Cor (a,D) = 0

}
/W Γxy

k-conjugacy classes of maximal k-tori S with (ES, ν) ∼= (EUE/F
, ν)

In example 6.129 we have

H1(k, UE/F )/W Γxy
k-conjugacy classes of maximal k-tori S with (ES, σhE,b

) ∼= (EUE/F
, σhE,b

)

On lemma 6.132, the hermitian forms h are completely determined (classified) by

their determinant (which lives in k×/NL/k(L
×)). Hence if cd(Γk) 6 2, the admissi-

ble algebras (E, σ) are precisely those with
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dethE,b ≡ disc(F/k) (mod NL/k(L
×))

On proposition 6.135 if cd(Γk) 6 2, then H1(k, SU(h)) = 0, i.e. all hermitian

forms are isomorphic. Hence the extra condition that ha
∼= h in the proposition

disappears, and we have

H1(k, UE/F )/W Γxy
k-conjugacy classes of maximal tori S with (ES, σh) ∼= (EUE/F

, σh)

6.3 Examples

Now we will illustrate our results with some examples, specifically for k = Fq, the

finite field of q elements where q = pm and p is an odd prime number, for k a

finite extension of Qp, the field of p-adic numbers, and for k = R, the field of real

numbers.

We shall consider the case where G = SO(Q), where Q is a non-degenerate

quadratic form of rank 2n over k.

Example 6.142. Let k = Fq the finite field of q elements, where q = pm is a

prime power. Let G = SO(Q), and T ⊂ G a maximal torus. We want to study

ker
(
i]T : H1(Fq, T ) −→ H1(Fq, G)

)
, but since quadratic forms over finite fields

are classified by their determinant, we have H1(Fq, G) = {0}, and so ker i]T =

H1(Fq, T ).

We know that we can associate to each maximal torus T an étale algebra ET with

involution σ. We denote by F those elements of E that are fixed by the involution,

i.e. F = Eσ. Now with the notation as before, T = UE/F = ker
(
N : Gm,E −→ Gm,F

)
;

then H1(Fq, T ) = F×/N(E×). Notice that the norm map of finite field extensions

and of étale extensions is surjective, hence, in this case H1(Fq, T ) = {0}, so S and
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T are conjugates over Fq if and only if (ES, σ) ∼= (ET , σ). Thus it is enough then to

count the isomorphism classes of algebras with involution (ES, σ) such that there

exists an embedding UE/F ↪→ SO(Q).

To this end, let P (n) be the set of partitions of n. There is a canonical one-to-one

correspondence

{ Étale algebras F of degree n} ←→ P (n)

This correspondence can be given explicitly by

F = Fpn1 × · · · × Fpnr ←→ {n1, . . . , nr}

For fixed F , we choose D ∈ F×/F×
2

and set E = F [t]/(t2 − D). Recall that E

comes equipped with the involution σ that sends t to −t.

If UE/F can be embedded into SO(Q), then Q ∼= TrF/k(axσ(x)) for some a ∈ F×

and conversely.

Notice that if x = u+ tv

det
(
TrF/k(axσ(x))

)
= det

(
TrF/k(a(u

2 −Dv2))
)

= NF/k(a)
2 · dF/k ·NF/k(−D) · dF/k

≡ NF/k(−D) (mod F×
2
)

so there exists an embedding UE/F ↪→ SO(Q) if and only if NF/k(−D) = detQ.

Note as well that F×/F×
2

= (Z/2Z)r and with this identification

N : (Z/2Z)r −→ Z/2Z

(D1, . . . , Dr) 7−→
r∑

i=1

Di (mod 2)

so there are 2r−1 choices for D as | ker N | = 2r−1. Thus the total number of k-

conjugacy classes is then given by ∑
℘∈P (n)

2`(℘)−1 ,

where `(℘) is the length of the partition ℘.
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Example 6.143. Let k be a finite extension of Qp, where p is a prime number.

We have

H1(k, T )
i]−−−→ H1(k,G)

δ1

y
Br(k)

and we have already seen in (6.21) that δ1 is given by a 7−→ Cor(a,D).

If F is a field, the corestriction map induces an isomorphism

Cor: Br(F )
∼−→ Br(k)

and we also have an injection Br(E/F ) ↪→ Br(F ). Thus if (ES, σ) ∼= (ET , σ), then

S and T are k-conjugates.

If F is not a field, let F = F1 × F2 × · · · × Fr × Fr+1 × · · · × Fr+s where each Fi is

a field for i = 1, . . . , r, and let

E = E1 × E2 × · · · × Er × (Fr+1 × Fr+1)× · · · × (Fr+s × Fr+s)

where Ei/Fi is a quadratic field extension for i = 1, . . . r.

We know that

F×/NE/F (E×) ∼=
r∏

i=1

F×i /NEi/Fi
(E×i )

and each F×i /NEi/Fi
(E×i ) ∼= Z/2Z, so F×/NE/F (E×) ∼=

r∏
i=1

Z/2Z. We have the

corestriction map

Cor : (Z/2Z)r −→ Z/2Z

(x1, . . . , xr) 7−→
r∑

i=1

xi (mod 2)

W Γ acts on ker (Cor) by permuting the coordinates. By theorem 6.125, there is a

one-to-one correspondence
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ker Cor/W Γxy
k-conjugacy classes of maximal k-tori S with (ES, σ) ∼= (ET , σ)

Example 6.144. Let k = R. In the case where k = R a torus T must be of the

form T = Sr×
(
Gm,R

)s
, where S is defined by the equation x2 + y2 = 1. We call T

a torus of type (r, s). Thus the étale algebra corresponding to a torus of type (r, s)

is E = Cs× (R× R)s, and F = Cr×Rs. In this case we shall describe directly the

kernel of H1(R, T ) −→ H1(R, SO(Q)).

Proposition 6.145. Let Q be a quadratic form of rank 2n, and let σ = 1
2
sgn(Q).

A torus T of type (r, s) with r + s = n can be embedded into SO(Q) if and only if

r > |σ| and r ≡ σ (mod 2).

Proof. If T can be embedded into SO(Q), then there exists

a = (α1, α2, . . . , αr, αr+1, αr+2, . . . , αr+s) ∈ F,

such that Q is of the form

Q(x) = TrF/R(axx̄) = TrCr/R(αxx̄)⊕ 〈1,−1〉s

= 〈α1, α2, . . . , αr〉 ⊗ 〈1, 1〉 ⊕ 〈1,−1〉s

So σ = sgn〈α1, α2, . . . , αr〉 6 r and we also have r ≡ σ (mod 2) since the signature

and the dimension of a quadratic form always have the same parity. The converse

also holds since we can choose 〈α1, α2, . . . , αr〉 as above so that it has the needed

signature.

Proposition 6.146. With the same notation as above. If r > |σ|, then the number

of conjugacy classes of tori S ⊂ SO(Q) with S ∼= T is 1 + r−|σ|
2

.
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Proof. We may assume without loss of generality that σ > 0 since we can always

replace Q by −Q without changing SO(Q). Now we have

F×/N(E×) = H1(R, T ) −→ H1(R, SO(Q))

sending a to [Tr(abxx̄)]. But

[Tr(abxx̄)] = [〈α1β1, α2β2, . . . , αrβr〉 ⊗ 〈1, 1〉 ⊕ 〈1,−1〉s] = [Q]

if and only if

〈α1β1, α2β2, . . . , αrβr〉 ∼= 〈α1, α2, . . . , αr〉

Now we can always write

〈α1, α2, . . . , αr〉 ∼= 〈
m−times︷ ︸︸ ︷
1, . . . , 1,

(r−m)−times︷ ︸︸ ︷
−1, . . . ,−1 〉

If we choose j 1’s from them 1’s to form β, we must have j 6 m, andm−j 6 r−m.

Thus we must have

2m− r 6 j 6 m

But notice that σ = 2m− r, so in terms of σ we have

σ 6 j 6
σ + r

2

and hence the number of conjugation classes of tori of type (r, s) is the number of

possible j’s which is σ+r
2
− σ + 1 = r−σ

2
+ 1. Notice that this is always an integer

since r and σ have the same parity.

Proposition 6.147. The total number of R-conjugacy classes of R-tori is([
n−σ

2

]
+ 1
) ([

n−σ
2

]
+ 2
)

2
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Proof. To get all the conjugacy classes we need to sum over all possible r’s. These

are the ones satisfying σ 6 r 6 n and r ≡ σ (mod 2). Now since r ≡ σ (mod 2)

we must have r − σ = 2k for some k, that is, k = r−σ
2

. Let M =
[

n−σ
2

]
. We have

Total Number of Conjugacy Classes =
∑

r≡σ (mod 2)

σ6r6n

1 +
r − σ

2

=
M∑

k=0

(1 + k)

=
(M + 1)(M + 2)

2

Notice that if σ = n, then T (R) is compact. If n = σ + 1, then r = σ and so

(M+1)(M+2)
2

= 1. We call this case the Lorentz case.
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