Core-1 Algebra Comprehensive Examination
 Jandary 2002

Directions. Choose six out of the eight problems below. Start each problem on a new sheet of paper. Put your name and the problem number at the top of every sheet. Hand in ONLY the six problems you want graded. You have 2 and $1 / 2$ hours for this test. Good luck!
(1) Let $G \subset G L_{2}(\mathbf{R})$ be the subgroup of upper triangular matrices (i.e. matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ with $\left.a c \neq 0\right)$.
(a) Show that $N=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right): b \in \mathbf{R}\right\}$ is a normal subgroup of G.
(b) Show that the quotient group G / N is isomorphic to $\mathbf{R}^{\times} \times \mathbf{R}^{\times}$.
(2) Find, up to similarity, all linear transformations $T: V \rightarrow V$ with characteristic polynomial $P=(X+1)^{2} X^{3}$ on a vector space V of dimension 5
(3) Determine the structure of the abelian group (as in the Structure Theorem for Finitely Generated Abelian Groups) generated by \mathbf{x}, \mathbf{y}, \mathbf{z}, subject to the relations

$$
\begin{aligned}
6 \mathbf{x}+12 \mathbf{y}+4 \mathbf{z} & =0 \\
14 \mathbf{x}+24 \mathbf{y}+8 \mathbf{z} & =0 \\
4 \mathbf{x}+24 \mathbf{y}+4 \mathbf{z} & =0
\end{aligned}
$$

(4) (a) For $A, B \in M_{n}(\mathbf{C})$, we define $<A, B>=\operatorname{Tr}\left(A B^{*}\right)$. Show that $<,>$ is a positive-definite hermitian form on $M_{n}(\mathbf{C})$.
(b) Let $V=\left\{A \in M_{2}(\mathbf{C}): \operatorname{Tr}(A)=0\right\}$. Find an orthonormal basis of V with respect to the hermitian form $<,>$ defined in (a).
(5) (a) Show that if $\lambda \in \mathbf{C}$ is an eigenvalue of a unitary matrix then $|\lambda|=1$. (Recall that a matrix $U \in M_{n}(\mathbf{C})$ is unitary if it satisfies $U^{*} U=I$.)
(b) Let $U \in S O_{n}(\mathbf{R})$, where n is odd. Show that 1 is an eigenvalue of U. (Recall that $S O_{n}(\mathbf{R})$ denotes the group of matrices $U \in$ $M_{n}(\mathbf{R})$ satisfying $U^{t} U=I$ and $\operatorname{det}(U)=1$.)
(c) Let $U \in \mathrm{SO}_{3}(\mathbf{R})$. Show that every matrix $U \in \mathrm{SO}_{3}(\mathbf{R})$ is conjugate in $\mathrm{SO}_{3}(\mathbf{R})$ to a matrix of the form

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right) .
$$

(6) Let R be a commutative ring. There is a standard theorem that says that if R is a field, then $R[X]$ is a PID. Prove the converse: If $R[X]$ is a PID, then R is a field.
(7) Let \mathbf{F}_{3} be the field with 3 elements.
(a) Show that $f=X^{3}+2 X+2$ and $g=X^{3}+2 X+1$ are irreducible polynomials in $\mathbf{F}_{3}[X]$.
(b) Show that the ring homomorphism $\phi: \mathbf{F}_{3}[X] \rightarrow \mathbf{F}_{3}[X]$ defined by $\phi(X)=2 X+1$ induces a field isomorphism

$$
\bar{\phi}: \mathbf{F}_{3}[X] /(f) \longrightarrow \mathbf{F}_{3}[X] /(g) .
$$

(8) Let M be a module over a ring R. Let $P \subset M$ be a submodule and let $\pi: M \rightarrow M / P$ be the canonical projection. Show that the following conditions are equivalent:
(i) There exists a submodule $Q \subset M$ such that $M=P \oplus Q$
(ii) There exists a homomorphism $r: M \rightarrow P$ such that $\left.r\right|_{P}=\mathbf{1}_{P}$.
(iii) There exists a homomorphism $s: M / P \rightarrow M$ with $\pi \circ s=\mathbf{1}_{M / P}$

