Core-1 Algebra Comprehensive Examination January 2002

DIRECTIONS. Choose six out of the eight problems below. Start each problem on a new sheet of paper. Put your name and the problem number at the top of every sheet. Hand in ONLY the six problems you want graded. You have 2 and 1/2 hours for this test. Good luck!

(1) Let G ⊂ GL₂(**R**) be the subgroup of upper triangular matrices (i.e. matrices of the form \$\begin{pmatrix} a & b \\ 0 & c \$\end{pmatrix}\$ with ac ≠ 0\$).
(a) Show that N = \$\begin{pmatrix} 1 & b \\ 0 & 1 \$\end{pmatrix}\$: b ∈ **R**\$ is a normal subgroup of G.

(b) Show that the quotient group G/N is isomorphic to $\mathbf{R}^{\times} \times \mathbf{R}^{\times}$.

- (2) Find, up to similarity, all linear transformations $T: V \to V$ with characteristic polynomial $P = (X + 1)^2 X^3$ on a vector space V of dimension 5
- (3) Determine the structure of the abelian group (as in the Structure Theorem for Finitely Generated Abelian Groups) generated by x, y, z, subject to the relations

$$6\mathbf{x} + 12\mathbf{y} + 4\mathbf{z} = 0$$

$$14\mathbf{x} + 24\mathbf{y} + 8\mathbf{z} = 0$$

$$4\mathbf{x} + 24\mathbf{y} + 4\mathbf{z} = 0.$$

- (4) (a) For $A, B \in M_n(\mathbf{C})$, we define $\langle A, B \rangle = \text{Tr}(AB^*)$. Show that \langle , \rangle is a positive-definite hermitian form on $M_n(\mathbf{C})$.
 - (b) Let $V = \{A \in M_2(\mathbb{C}) : \operatorname{Tr}(A) = 0\}$. Find an orthonormal basis of V with respect to the hermitian form <, > defined in (a).

- (5) (a) Show that if $\lambda \in \mathbf{C}$ is an eigenvalue of a unitary matrix then $|\lambda| = 1$. (Recall that a matrix $U \in M_n(\mathbf{C})$ is unitary if it satisfies $U^*U = I$.)
 - (b) Let $U \in SO_n(\mathbf{R})$, where *n* is *odd*. Show that 1 is an eigenvalue of *U*. (Recall that $SO_n(\mathbf{R})$ denotes the group of matrices $U \in M_n(\mathbf{R})$ satisfying $U^t U = I$ and $\det(U) = 1$.)
 - (c) Let $U \in SO_3(\mathbf{R})$. Show that every matrix $U \in SO_3(\mathbf{R})$ is conjugate in $SO_3(\mathbf{R})$ to a matrix of the form

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}.$$

- (6) Let R be a commutative ring. There is a standard theorem that says that if R is a field, then R[X] is a PID. Prove the converse: If R[X] is a PID, then R is a field.
- (7) Let \mathbf{F}_3 be the field with 3 elements.
 - (a) Show that $f = X^3 + 2X + 2$ and $g = X^3 + 2X + 1$ are irreducible polynomials in $\mathbf{F}_3[X]$.
 - (b) Show that the ring homomorphism $\phi : \mathbf{F}_3[X] \to \mathbf{F}_3[X]$ defined by $\phi(X) = 2X + 1$ induces a field isomorphism

$$\phi: \mathbf{F}_3[X]/(f) \longrightarrow \mathbf{F}_3[X]/(g).$$

- (8) Let M be a module over a ring R. Let $P \subset M$ be a submodule and let $\pi : M \to M/P$ be the canonical projection. Show that the following conditions are equivalent:
 - (i) There exists a submodule $Q \subset M$ such that $M = P \oplus Q$
 - (ii) There exists a homomorphism $r: M \to P$ such that $r|_P = \mathbf{1}_P$.
 - (iii) There exists a homomorphism $s: M/P \to M$ with $\pi \circ s = \mathbf{1}_{M/P}$