CORE II ALGEBRA January, 2001

Directions: You must answer the three starred problems. Then, answer three of the remaining five problems. Let \mathbf{Q} denote the field of rational numbers.

(*) 1. Let K, E, and F be fields such that $K \subset E \subset F$.

(i) Prove that if F is algebraic over E and E is algebraic over K, then F is algebraic over K.

(ii) Give an example of fields K, E, and F such that F is Galois over E and E is Galois over K, but F is not Galois over K.

- (*) 2. (i) Construct a field with precisely 16 elements.
 (ii) Does your field in (i) contain a subfield with precisely 8 elements? If so, tell what it is; if not, tell why not.
 - (iii) Determine the Galois group of the field in (i) over the field with 2 elements.
- (*) 3. Prove that there is no simple group of order 56.
 - 4. (i) If F = Q(√2, √3), find [F : Q] and a basis of F over Q.
 (ii) Do the same for F = Q(i, √3, ζ), where i is a complex number whose square is -1 and ζ is a primitive (complex) cube root of 1.
 - 5. Prove Cayley's Theorem: Every finite group is isomorphic to a subgroup of a group of permutations.
 - 6. Let p be a prime. Let G be a group of order $p^e r$, where p does not divide r and e is a positive integer. Suppose H is a normal subgroup of G of order $p^e s$. Prove that every Sylow p-subgroup of G is contained in H.
 - 7. Let G be a group of order 8.

(i) If $g \in G$, show that the conjugacy class of g cannot consist of precisely 4 elements. (Hint: If that did happen, then what would that say about the centralizer of g?)

(ii) What are the possible class equations for a group of order 8? Justify your answer.

8. Let K be a finite Galois extension of F and put G = G(K/F). For $\alpha \in K$, define the trace $Tr(\alpha)$ and the norm $N(\alpha)$ by

$$\operatorname{Tr}(\alpha) = \sum_{\sigma \in G} \sigma(\alpha)$$
 and $\operatorname{N}(\alpha) = \prod_{\sigma \in G} \sigma(\alpha)$.

Prove that $Tr(\alpha)$ and $N(\alpha)$ lie in F.