MATHEMATICS COMPREHENSIVE EXAMINATION

CORE I - ANALYSIS

August 2001

Directions: The test is divided into five sets of problems (A), (B), (C), (D), and (E). Do problem (A) and select one problem from each of the four sets (B) - (E). Please answer each problem on a separate sheet of paper. Turn in only the five problems you wish to have graded. You have 2 and $1 / 2$ hours to complete this test. Good luck!

Problem Set (A). Please answer each problem (a) - (f) with 'true' or 'false' only. Do not explain. Answer the questions (g) - (j) as well as you possibly can.
(a) $M:=\left\{f \in C[0,1]: f\right.$ continuously differentiable and $f^{\prime}(x)>0$ for all $\left.x \in[0,1]\right\}$ is open in the space $C[0,1]$ of real continuous functions on $[0,1]$ equipped with the sup-norm.
(b) Every almost everywhere differentiable function $f:[0,1] \rightarrow \mathbb{R}$ is absolutely continuous.
(c) The set of all continuous functions f with $\int_{0}^{1} f(t) d t=0$ is compact in the space $C[0,1]$ of all real continuous functions on $[0,1]$ equipped with the sup norm.
(d) Let $f(0):=0$ and $f(t):=\frac{1}{\sqrt{t}}$ for $t>0$. Then f is Lebesgue integrable on $[0,1]$.
(e) A continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be approximated uniformly on \mathbb{R} by polynomials.
(f) The set of all functions $f_{a}: x \rightarrow e^{a x}$ with $a \in[0,2]$ is compact in the space $C[0,1]$ of all real continuous functions on $[0,1]$ equipped with the sup norm.
(g) State the fundamental theorem of calculus for (1) continuously differentiable functions and (2) for absolutely continuous functions.
(h) State the Hahn-Banach theorem.
(i) State the open mapping theorem.
(j) State the implicit function theorem.

Problem Set (B).

B. 1 Let $f \in L^{1}(0, \infty)$. Prove or disprove that
(a) $\lim _{n \rightarrow \infty} \int_{0}^{n} e^{-n x} f(x) d x=0$.
(b) $\lim _{n \rightarrow \infty} \int_{0}^{1 / n} f(x) d x=0$.
(c) $\lim _{n \rightarrow \infty} \int_{n}^{\infty} f(x) d x=0$.
(d) For all $\epsilon>0$ there exists $n \in \mathbb{N}$ such that $|f(x)| \leq \epsilon$ for almost all $x \geq n$.
B. 2 Let $f \in L^{1}(\mathbb{R})$ (with respect to the Lebesgue measure) such that $\int_{\mathbb{R}}|x||f(x)| d x<\infty$. Show that the function $g(y):=\int_{\mathbb{R}} e^{i x y} f(x) d x$ is differentiable at every $y \in \mathbb{R}$.

Problem Set (C).

C. 1 Let $g_{n}:=n \chi_{\left[0, n^{-3}\right]}$ (where $\chi-[a, b]$ denotes the characteristic function of the interval $[a, b])$. Show that $\int_{0}^{1} f(x) g_{n}(x) d x \rightarrow 0$ for all $f \in L^{2}[0,1]$, but not all $f \in L^{1}[0,1]$.
C. 2 Let f be a non-negative Lebesgue measurable function on $(0, \infty)$ such that f^{2} is integrable. Let $F(x):=\int_{0}^{x} f(t) d t$ where $x>0$. Show that $\lim _{x \rightarrow 0+} \frac{F(x)}{\sqrt{x}}=0$.

Problem Set (D).

D. 1 Let

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { for } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { for } 1 / n \leq x \leq 2 / n \\ 0 & \text { for } 2 / n<x \leq 1\end{cases}
$$

Sketch the graphs of f_{1} and f_{2}. Prove that if g is a continuous real-valued function on $[0,1]$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=g(0)
$$

(Hint: First show that $\int_{0}^{1} f_{n}(x) d x=1$.)
D. 2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function.
(a) Use Taylor's formula with remainder to show that given x and h then $f^{\prime}(x)=$ $\frac{f(x+2 h)-f(x)}{2 h}-h f^{\prime \prime}(\xi)$ for some ξ.
(b) Assume $f(x) \rightarrow 0$ as $x \rightarrow \infty$, and that $f^{\prime \prime}$ is bounded. Show that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$.

Problem Set (E).

E. 1 (a) Let X be a complete metric space. A mapping $F: X \rightarrow X$ is said to be a contraction if there is a constant $r<1$ such that $d(F(u), F(v)) \leq r \cdot d(u, v)$ for all $u, v \in X$. Given a contraction F and a point $u_{0} \in X$, define a sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ in X by $u_{k+1}=F\left(u_{k}\right)$. Show that $d\left(u_{k+1}, u_{k}\right) \leq r^{k} d\left(u_{1}, u_{0}\right)$ and prove that the sequence $\left(u_{k}\right)$ converges to the unique fixed point of F.
(b) Let $g \in C[0,1]$ with $\int_{0}^{1}|g(s)| d s \leq r<1$. Use part (a) to show that, for all $f \in C[0,1]$, there exists a unique solution $u=u(\cdot) \in C[0,1]$ of the equation

$$
\begin{equation*}
u(t)=\int_{0}^{t} g(t-s) u(s) d s+f(t), \quad 0 \leq t \leq 1 \tag{*}
\end{equation*}
$$

(c) Show that the operator A which assigns to each $f \in C[0,1]$ the unique solution u of the equation $(*)$ is a linear operator from $C[0,1]$ into $C[0,1]$.
(d) Use the 'Closed Graph Theorem' to show that A is a continuous linear operator.
(e) Show that the solutions u of $(*)$ depend continuously on the forcing terms f.
E. 2 Let X_{0}, X_{1}, X_{∞} be the normed linear spaces obtained by putting the norms

$$
\|f\|_{0}:=\sup _{t \in[0,1]}\left|\int_{0}^{t} f(s) d s\right|, \quad\|f\|_{1}:=\int_{0}^{1}|f(s)| d s, \quad\|f\|_{\infty}:=\sup _{t \in[0,1]}|f(t)|
$$

on the set of continuous real functions on $[0,1]$.
(a) Show that the normed vector spaces X_{0} and X_{1} are not complete.
(b) Show that the functions $f_{n}(t):=\sqrt{n} \sin (n t)$ converge to zero in X_{0}, but not in X_{1} and X_{∞}.
(c) Show that the linear functional $\Lambda f:=f(1 / 2)$ is bounded on X_{∞}, but not on X_{0} and X_{1}.

