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1. Metric and normed spaces, completeness and completion

1.1 Let X be a compact set and C(X) the space of real continuous functions on X

equipped with the sup norm. Let M = {f ∈ C(X) such that f(x) > 0 for all

x ∈ X}. Show that M is an open subset of C(X).

1.2 Let X be the normed linear space obtained by putting the norm ‖f‖0 :=

supt∈[0,1] |
∫ t
0 f(s) ds| on the set of continuous real functions on [0, 1].

(a) Show that the functions fn(t) := sin(nt) converge to zero in X.

(b) Show that X is not a Banach space.

(c) Let f : [0, 1] → IR be continuous and extend f to [0,∞) by setting f(t) := f(1)

for t > 1. Show that the differential quotients Dh : t → f(t+h)−f(t)
h converge

uniformly on [0,1] as h → 0+ if f is continuously differentiable. Show that

the differential quotients Dh are Cauchy in X as h → 0+ for any continuous

f : [0, 1] → IR with f(0) = 0; i.e., for all ε > 0 there exists h0 > 0 such that

‖Dh −Dk‖0 < ε for all 0 < h, k < h0.

1.3 For 0 < α ≤ 1 consider the space Lα of all functions on [0, 1] → IR such that

‖f‖α := |f(0)|+ sup
s6=t

|f(s)− f(t)|
|s− t|α

< ∞.

(a) Show that Lα is a Banach space.

(b) Show that each element in Lα is absolutely continuous.
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2. Continuous linear transformations and functions

closed graph theorem, open mapping theorem

2.1 (a) Let X be a complete metric space. A mapping F : X → X is said to be a

contraction if there is a constant r < 1 such that d(F (u), F (v)) ≤ r · d(u, v)

for all u, v ∈ X. Given a contraction F and a point u0 ∈ X, define a sequence

(uk)k∈IN in X by uk+1 = F (uk). Show that d(uk+1, uk) ≤ rkd(u1, u0) and

prove that the sequence (uk) converges to the unique fixed point of F .

(b) Let g ∈ C[0, 1] with
∫ 1
0 |g(s)| ds ≤ r < 1. Use part (a) to show that, for all

f ∈ C[0, 1], there exists a unique solution u = u(·) ∈ C[0, 1] of the equation

u(t) =
∫ t

0
g(t− s)u(s)ds + f(t), 0 ≤ t ≤ 1. (∗)

(c) Show that the operator A which assigns to each f ∈ C[0, 1] the unique solution

u of the equation (∗) is a linear operator from C[0, 1] into C[0, 1].

(d) Use the ‘Closed Graph Theorem’ to show that A is a continuous linear operator.

(e) Show that the solutions u of (∗) depend continuously on the forcing terms f .

2.2 Let k be a measurable function on IR2 such that
∫

IR(
∫

IR |k(x, y)|qdy)p/qdx < ∞ for

some 1 < q < ∞ and 1
p + 1

q + 1. Show that

(Tf)(x) :=
∫

IR
k(x, y)f(y)dy

defines a continuous linear map T : Lp(IR) → Lp(IR).

2.3 Let X be the normed linear space obtained by putting the norm ‖f‖1 =
∫ 1
0 |f(t)| dt

on the set of continuous real functions on [0, 1].

(a) Show that X is not a Banach space. [→ 1]

(b) Show that the linear functional Λf = f(1/2) is not bounded.
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3. Continuous functions: uniform convergence, principle of uniform

boundedness, Stone-Weierstrass, compactness

3.1 A subset S of IR is of type Fσ if S is the countable union of closed sets.

(a) Let f be any function from IR to IR. Prove that the set of points of discontinuity

of f is of type Fσ.

(b) Can a function from IR to IR be continuous on the rationals and discontinu-

ous on the irrationals? What if the roles of the rationals and irrationals are

interchanged?

(c) Briefly explain why there are continuous, nowhere differentiable functions on

IR.

3.2 (a) Let fn : IR → IR be given by fn(x) = x
n (n ∈ IN). Show that the sequence

(fn)n∈IN is pointwise convergent on IR but not uniformly convergent on IR.

(b) Let fn : [0, 1] → IR be given by fn(x) = 1
1+nx2 (n ∈ IN). Show that (fn)n∈IN

is a bounded subset of C[0, 1] and that no subsequence of (fn)n∈IN converges

in C[0, 1].

3.3 Let fn : IR → IR be given by fn(x) = x
1+nx2 (n ∈ IN).

(a) Show that supx∈IR |fn(x)| = 1
2
√

n . Conclude that the sequence (fn)n∈IN con-

verges uniformly on IR to a function f . What is f?

(b) Show that the equation f ′(x) = limn → ∞ f ′n(x) is true if x 6= 0, but false if

x = 0.

3.4 Identify all subsets of [0, 1] on which
∑∞

n=0 xn converges uniformly. Explain.

3.5 (a) Show that every continuous function on [0, 1] is a uniform limit of step functions.
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(b) Is the converse true? (A step function is finite linear combination of charac-

teristic functions of intervals.)

3.6 Show that every continuous function f : [0, 1] × [0, 1] → IR can be uniformly ap-

proximated by polynomials p(s, t) = α0 +
∑N

n,m=1 αnmtnxm, where αnm ∈ IR and

N ∈ IN . Is the same result true for continuous functions f : IR× IR → IR?

3.7 Prove or disprove: The product of two uniformly continuous functions on IR is also

uniformly continuous.

3.8 Let χ[−n,n](·) denote the characteristic function of the interval [−n, n] (n ∈ IN).

Consider the sequence of functions fn(x) := χ[−n,n](x) sin(πx
n ) (x ∈ IR).

(a) Determine f(x) = limn→∞ fn(x) and show that the sequence (fn)n∈IN con-

verges uniformly on compact subsets of IR. Does the sequence converge uni-

formly on IR?

(b) Show that
∫ ∞

−∞
f(x) dx = lim

n→∞

∫ ∞

−∞
fn(x) dx.

Are the assumptions of Lebesgue’s dominated convergence theorem satisfied?

3.9 Prove or disprove the following two statements:

(a) If
∑∞

n=1 an converges, then
∑∞

n=1 an cosnx converges pointwise everywhere on

IR.

(b) If
∑∞

n=1 an converges absolutely, then
∑∞

n=1 an cosnx converges to a continu-

ous function on IR.

3.10 Let f(x) =







x2, if x is irrational

0, if x is rational
Show that f is continuous at only one point, and

that f is differentiable there.
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3.11 Let C0,0[0, 1] be the space of all continuous real functions f on the internal [0, 1]

satisfying f(0) = f(1) = 0. Let P0,0 be the subspace of polynomials in C0,0[0, 1].

Show that P0,0 is dense in C0,0[0, 1] in the sup norm.

3.12 Let fn : [0,∞) → IR be defined by fn(x) := (x/n)e−(x/n) (n ∈ IN).

(a) Determine f(x) = limn→∞ fn(x). Show that the sequence (fn)n∈IN converges

uniformly to f on [0, a] for any non-negative real number a. Does the sequence

converge uniformly to f on [0,∞)? Justify your answer.

(b) Show that f(x) = limn→∞
∫ a
0 fn(x) dx =

∫ a
0 f(x) dx, but that

limn→∞
∫∞
0 fn(x) dx 6=

∫∞
0 f(x) dx.

3.13 Let I = [0, 1]. Suppose f is a continuous real-valued function on I × I. Show that

f can be uniformly approximated by functions of the from
∑n

i=1 fi(x)gi(y) where

fi and gi are continuous real-valued function on I.

3.14 Show: if f ∈ C[0, 1] and
∫ 1
0 f(x)xndx = 0 for all n ∈ IN0, then f = 0.

3.15 Let (xn)n∈IN be a sequence of real numbers. Prove that the following are equivalent.

(i) limn→∞ xn = a.

(ii) Every subsequence of (xn)n∈IN contains a subsequence that converges to a.

3.16 Show that the function f(x) = 2−x + 3 · 2−3x + . . . + (2n + 1)2−(2n+1)x + . . . is

continuous on (0,∞).

3.17 (a) Prove or disprove: A continuous function on the interval [0,∞) can be

approximated uniformly by polynomials.

(b) Prove or disprove: If f and g are both functions from IR into IR, and

limt→a g(t) = b and limt→b f(t) = c, then limt→a f(g(t)) = c.



6

3.18 Let f : [0, 1] → IR be continuously differentiable. Prove that for any ε > 0, there

exists a polynomial P (x) such that ‖f −P‖∞ < ε and ‖f ′−P ′‖∞ < ε. Here ‖ · ‖∞

denotes the sup-norm.

3.19 Prove: If f ∈ C[0, 1] and
∫ 1
0 f(x)e−nx dx = 0 for all n ∈ IN0, then f = 0.

3.20 Let fn : [1,∞) → IR be defined by fn(x) := n+1
n e−nx (n ∈ IN). Show that the

series
∑∞

k=1 fk converges uniformly to a continuous function.

3.21 fn : IR → IR be defined by fn(x) := (sin x)n (n ∈ IN). Does (fn)n∈IN converge

uniformly?
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4. Differentiable functions: Jacobians, inverse and implicit functions, power series

4.1 Does ez(x2 + y2 + z2) −
√

1 + z2 + y = 0 have a solution z = f(x, y) which is

continuous at x = 1, y = 0 and f(1, 0) = 0? Explain carefully!

4.2 Let f : IR → IR be an infinitely differentiable function.

(a) Use Taylor’s formula with remainder to show that given x and h then f ′(x) =

(f(x + 2h)− f(x))/2h− hf ′′(ξ) for some ξ.

(b) Assume f(x) → 0 as x → ∞, and that f ′′ is bounded. Show that f ′(x) → 0

as x →∞.

4.3 Let f(x, y) = xy − cos y + x2 + 1. At what points on the set {(x, y) : f(x, y) = 0}

does the condition f(x, y) = 0 fail to define either x as a function of y or y as a

function of x?

4.4 Prove or give a counterexample: If f is a uniform limit of polynomials on [−1, 1],

then the Maclaurin series of f converges to f in some neighborhood of 0.

4.5 Can the surface whose equation is xy− z log y + exz = 1 be represented in the form

z = f(x, y) in a neighborhood of (0, 1, 1)? In the form y = g(x, z) in a neighborhood

of (0, 1, 1)?

4.6 Let f(x) = zk sin(1/x) if x 6= 0 and f(0) = 0.

(a) If k = 2, show that f is differentiable everywhere but f ′ fails to be continuous

at some point.

b If k = 3, does f have a second derivative at all points? If so, is f ′′ a continuous

function? Give your reasons.

4.7 Let f be defined on IR3 by f(x, y, z) = x2+4y2−2yz−z2. Show that f(2, 1,−4) = 0

and fz(2, 1,−4) 6= 0, and that there exists therefore a differentiable function g in
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a neighborhood of (2, 1) in IR2, such that f(x, y, g(x, y)) = 0. Find gx(2, 1) and

gy(2, 1). What is the value of g(2, 1)?

4.8 Suppose that a function f is defined on (0, 1] and has a finite derivative with

|f ′(x)| < 1. Define an := f(1/n) for n = 1, 2, 3, . . . . Show that limn→∞ an exists.

4.9 Prove or disprove: The series
∑∞

n=1(−1)n n2+n
n2 is uniformly convergent on [−1, 1].

4.10 Define a function f on IR by

f(x) =

{

e−1/x2
, if x > 0

0, if x ≤ 0

(a) Check whether f is infinitely differentiable at 0, and, if so, find f (n)(0), n =

1, 2, 3, · · · . Show details.

(b) Does f have a power series expansion at 0?

(c) Let g(x) = f(x)f(1 − x). Show that g is a nontrivial infinitely differentiable

function on IR which vanishes outside (0, 1).

4.11 Prove that a function f : IRn → IR is continuous at x = (x1, · · · , xn) ∈ IRn if the

partial derivatives fx1 , . . . , fxn exist and are bounded in a neighborhood of x.

4.12 Let fN (x) =
∑N

n=1 an sin(nx) for an, x ∈ IR. If
∑∞

n=1 nan converges absolutely,

show that (fN )N∈IN converges uniformly to a function f on IR, and that (f ′N )N∈IN

converges uniformly to f ′ on IR.

4.13 Let f be a twice continuously differentiable real-valued function on IRn. A point

x ∈ IRn is a critical point of f if all partial derivatives of f vanish at x (i.e.,

5f(x) = 0), a critical point x is nondegenerate if the n× n matrix

[

∂2f
∂xi∂xj

(x)
]
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is nonsingular. Let x be a nondegenerate critical point of f . Prove that there

is an open neighborhood of x which contains no other critical points. (i.e., the

nondegenerate critical points are isolated.)

4.14 Show that the power series in x for the function f(x) = eax cos(bx) (a, b ∈ IR) has

either no zero coefficients or infinitely many zero coefficients.

4.15 Let f be continuous function on [0, 1]. Define

In =
n

∏

j=1

[

1 +
1
n

f
(

j
n

)]

for every integer n ≥ 1. Determine the limit limn→∞ In.

4.16 Show that a function f(x) = e−x + 2e−2x + . . . + ne−nx + . . . is continuous on

(0,∞).

4.17 Let f(x) = e−1/x2
if x > 0 and f(x) = 0 if x ≤ 0. Verify, using induction, that for

each positive integer k, there is a polynomial pk such that f (k)(x) = f(x)pk(x)x−3k

for all x > 0. Show that the function φ : x → f(1 + x)f(1 − x) has the following

properties:

(i) φ is smooth (i.e. has derivatives of all orders);

(ii) φ ≥ 0;

(iii) φ(x) = 0 if |x| ≥ 1;

(iv)
∫∞
−∞ φ(x)dx > 0.

4.18 Let f : IR → IR be a twice differentiable function with bounded first and sec-

ond derivatives. By considering the Taylor expansion of f , show that: ‖f ′‖∞ ≤
1
h‖f‖∞| + h‖f ′′‖∞ for every h > 0. By minimizing over h, show that ‖f ′‖∞ ≤

2
√

‖f‖∞‖f ′′‖∞, where ‖g‖∞ denotes supx∈IR |g(x)|.
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4.19 Define the Hermite polynomial of degree n by

Hn(x) = (−1)ne
x2
2 (

d
dx

)ne−
x2
2 (n ≥ 0, x ∈ IR).

Use Taylor’s theorem to prove the identity

∞
∑

n=0

tn

n!
Hn(x) = etx− 1

2 t2 .

4.20 Let f be a real-valued differentiable function on an interval (a, b). Show that f is

Lipschitz continuous if and only if f has bounded derivative.
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5. Functions of bounded variation

5.1 If f is continuous on an interval [a, b] with a bounded derivative in (a, b), show that

f is of bounded variation on [a, b]. Is the boundedness of f ′ necessary for f to be

of bounded variation? Justify your answer.

5.2 (a) Prove that if a real-valued function f is of bounded variation on an interval

[a, b], then f has right and left-hand limits at all x ∈ (a, b).

(b) Prove that a function f : [a, b] → IR of bounded variation has at most countably

many points of discontinuity.

5.3 Let f(x) = x2 sin( 1
x ), g(x) = x2 sin( 1

x2 ) for x 6= 0 and f(x) = g(x) = 0 for x = 0.

Show:

(a) f and g are differentiable everywhere (including x = 0),

(b) f is bounded variation on the interval [−1, 1], but g is not.

(c) Let f(x) = x sin(1/x) for x 6= 0 and f(x) = 0 for x = 0. Is f of bounded

variation on [−1, 1]?
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6. Riemann integral, Lebesgue integral (via completion),

convergence theorems

6.1 Let f be a positive function on (0, 1] such that f is Riemann integrable on [t, 1] for

all t ∈ (0, 1), but limx→0+ f(x) = ∞. Assume that the improper (Riemann) integral

(R)
∫ 1
0 f(x)dx exists. Show that f is a measurable function, Lebesgue integrable,

and
∫

[0,1]
f(x)dx = (R)

∫ 1

0
f(x)dx.

6.2 For each of the following problems, check whether the limit exists. If so, find its

value.

(a) lim
n→∞

∫ n

1
(1− x

n
)ndx, (b) lim

n→∞

∫ 2n

1
(1− x

n
)ndx.

6.3 (a) Characterize those bounded functions on [0, 1] which are Riemann integrable.

(b) Let (rn) be an enumeration of the rationals in [0, 1]. Define f on [0, 1] by

f(x) =







1
n

, if x = rn

0, if x is irrational

Is f Riemann integrable on [0,1]? Explain!

(c) Show that if

f(x) =







1, if x is rational

−1, if x is irrational

then f is not Riemann integrable on the interval [0, 1]. Is f Lebesgue inte-

grable? Explain!

6.4 Show there are no bounded sequences (an)n∈IN and (bn)n∈IN for which fn(x) =

an sin(2πnx) + bn cos(2πnx) converges to 1 almost everywhere on [0, 1].
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6.5 Let f(x) be a real-valued measurable function on [0, 1]. Show that

lim
n→∞

∫ 1

0
(cos(πf(x)))2ndx = m{x : f(x) is an integer},

where m denotes Lebesgue measure.

6.6 (a) Show that f(x) = x−r is a Lebesgue integrable function on [0, 1] if 0 ≤ r < 1.

(b) If 0 ≤ r < 1 let an =
∫ 1

0

dx
n−1 + xr (Lebesgue integral). Compute limn→∞ an.

Be sure to quote the appropriate integration theorems to justify your calcula-

tions.

6.7 Let fn : IR → IR be defined by

fn(x) =







1
n

, if |x| ≤ n

0, if |x| > n

(a) Show that fn converges to 0 uniformly on IR, and that limn→∞
∫

IR fn(x) dx = 2

while
∫

IR (limn→∞ fn) (x) dx 6= 2.

(b) Explain why the example in part (a) does not contradict the Lebesgue domi-

nated convergence theorem.

6.8 (a) Show that f(x) = 1/
√

x is Lebesgue integrable on (0, 1).

(b) Find inf{
∫ 1
0 ψ(x) dx|ψ is a simple function, and ψ(x) ≥ 1/

√
x on (0, 1)}.

(Simple functions are finite linear combinations of characteristic functions of

measurable sets with extended real-valued coefficients.)

6.9 Give an example of a sequence (fn)n∈IN of bounded, measurable functions on [0, 1)

such that

lim
n→∞

∫ 1

0
|fn(x)| dx = 0

but such that fn converges pointwise nowhere.
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6.10 Consider a Lebesgue-measurable function f or IR with
∫

IR
f(t)2 dt < ∞. show that

the function g(x) =
∫

IR
f(t− x)f(t) dt is continuous.

6.11 Prove that limn→∞
∫∞
−∞(sin nt)f(t)dt = 0 for every Lebesgue integrable function

f or R. (Hint: Do the problem first for step functions.)

6.12 Let fn(x) =
n

x(lnx)n for x ≥ e and n ∈ IN .

(a) For which n ∈ IN does the Lebesgue integral
∞
∫

e
fn(x) dx exist?

(b) Determine limn→∞ fn(x) for x > e.

(c) Does the sequence (fn)n∈IN satisfy the assumptions of Lebesgue’s dominated

convergence theorem?

6.13 Define f(x) =
∫

IR cos(xy)g(y) dy for x ∈ IR where g is an integrable function on IR.

Show that f is continuous.

6.14 Define g : IR → IR by g(x) = 0 if x is irrational and g(x) = 1
q if x = p/q in lowest

terms. Is g a Riemann integrable function? Give a proof of your assertion.

6.15 Give an example of a Lebesgue integrable function f on [0, 1] such that
∫ 1
0 f(x) dx =

1, but f is not Riemann integrable.

6.16 Let f ∈ L∞[0, 1] and
∫ 1
0 xnf(x) dx = 0 for n ∈ IN . Show that f = 0 a.e.

6.17 Let f be a non-negative Lebesgue measurable function on (0,∞) such that f2 is

integrable. Let F (x) =
∫ x
0 f(t) dt where x > 0. Show that limx→0+

F (x)√
x = 0.

6.18 Let f be a differentiable function on [−1, 1]. Prove that limε→0
∫

ε<|x|≤1
1
xf(x) dx

exists.

6.19 Let fn(x) :=
xn

n!
e−x for n ∈ IN0.

(a) Show that limx→∞ fn(x) = 0 for all x > 0.
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(b) Show that fn ∈ L1(0,∞) with ‖fn‖1 = 1 for all n ∈ IN0.

(c) Show that limk→∞
∫ k
0

xn

n! (1−
x
k )k dx = 1 for all n ∈ IN0.

6.20 Prove that limb→∞
∫ b
0

sin x
x dx exists but that the function sin x

x is not integrable

over (0,∞).

6.21 Compute the following limit and justify your calculations:

lim
n→∞

∫ ∞

0

(

1 +
x
n

)−n
sin

(x
n

)

dx

6.22 Let f be a continuous nonnegative function on [a, b] where a < b. Let M =

max{f(x) : a ≤ x ≤ b}. Show that

lim
n→∞

(

∫ b

a
f(x)n dx

) 1
n

= M.

6.23 Find and justify the limits: (a) lim
n→∞

∫ n

0

sin x
1 + nx2 dx and (b) lim

n→∞

∫ en

0

x
1 + nx2 dx.

6.24 Let fn(x) =
∑n−1

i=0
1
nf(x + i

n ), where f is a continuous function on IR. Show that

the sequence of functions (fn)n∈IN converges uniformly on every finite segment [a, b]

to the function F (x) =
∫ x+1

x f(s) ds.

6.25 Let f ∈ L1(IR) with respect to the Lebesgue measure such that
∫

IR |x||f(x)| dx < ∞.

Show that the function

g(y) =
∫

IR
eixyf(x)dx

is differentiable at every y ∈ IR.

6.26 Prove that if f is a real-valued Lebesgue integrable function on IR, then

lim
x→0

∫

|f(x + t)− f(t)| dt = 0.
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6.27 Let f ∈ L1(IR).

(a) Prove: limn→∞
∫ 1/n
0 f(x)dx = 0.

(b) Prove or disprove: limn→∞
∫∞

n f(x) dx = 0.

6.28 Give an example of a sequence of uniformly bounded measurable functions fn on

[0, 1] such that m{x|fn(x) 6= 0} → 0 as n → ∞, but the sequence fn(x) does not

converge for any x ∈ [0, 1].

6.29 Let

fn(x) =



























n2x, for 0 ≤ x <
1
n

2n− n2x, for
1
n
≤ x ≤ 2

n

0, for
2
n

< x ≤ 1

Sketch the graphs of f1 and f2. Prove that if g is a continuous real-valued function

on [0, 1], then

lim
n→∞

∫ 1

0
fn(x)g(x)dx = g(0).

(Hint: First show that
∫ 1
0 fn(x) dx = 1.)

6.30 Assume that the real valued measurable function f(t, x) and its partial derivative

∂
∂tf(t, x) are bounded on [0, 1]2. Show that for t ∈ (0, 1)

d
dt

[∫ 1

0
f(t, x) dx

]

=
∫ 1

0

∂
∂t

f(t, x) dx.

Hint: Consider the difference quotient for the derivative on the left.

6.31 Prove that if fn is Lebesgue integrable on [0, 1] for each n ∈ IN , and
∑∞

n=1

∫ 1
0 |fn(x)| dx < ∞, then

∑∞
n=1 fn(x) is convergent a.e., and

∫ 1

0

∞
∑

n=1

fn(x) dx =
∞
∑

n=1

∫ 1

0
fn(x)dx.

6.32 Let f ∈ L1(IR). Prove that limn→∞
∫ n
0 e−nxf(x) dx = 0.
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6.33 Assume that A ≥ 0, B > 0, and f continuous and nonnegative on [a, b]. Assume

that f(t) ≤ A + B
∫ t

a f(x) ds for a ≤ t ≤ b. Prove that f(t) ≤ AeB(t−a) for

a ≤ t ≤ b.
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7. Absolutely continuous functions and the fundamental

theorem of calculus

7.1 Show that the product of two absolutely continuous functions on a closed finite

interval [a, b] is absolutely continuous.

7.2 (a) Show that a Lipschitz function is absolutely continuous.

(b) Show that an absolutely continuous function f on an interval is Lipschitz if

and only if f ′ is bounded.

7.3 Let f be absolutely continuous in the interval [ε, 1] for each ε > 0. Does the

continuity of f at 0 imply that f is absolutely continuous on [0, 1]? What if f is

also of bounded variation on [0, 1]?

7.4 A function f : [0, 1] → L1[0, 1] is called Lipschitz continuous if there exists M > 0

such that ‖f(t) − f(s)‖1 ≤ M |t − s| for all t, s ∈ [0, 1]. It is called differentiable

at a point s ∈ (0, 1) if the differential quotients f(t)−f(s)
(t−s) converge in L1[0, 1] as

t → s. Let f : [0, 1] → L1[0, 1] be given by f(t) = χ[0,t], where χ[0,t] denotes the

characteristic function of the interval [0, t]. Show that f is Lipschitz continuous

and nowhere differentiable.
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8. Basic properties of Lp-spaces, Riesz representation for Lp-spaces

8.1 Show that (Lp[0, 1], ‖ · ‖p) is separable for 1 ≤ p < ∞, but not separable for p = ∞.

8.2 Show that Lp(0, 1) ⊂ Lq(0, 1) for any p > q ≥ 1. Here the integrability is with

respect to the Lebesgue measure. Is the inclusion map for Lp(0, 1) into Lq(0, 1)

continuous?

8.3 Prove or disprove the equality L∞[0, 1] = ∩1≤p<∞Lp[0, 1].

8.4 Let f ∈ Lp(IR), 1 ≤ p < ∞. Show that
∫

|x|>n
|f(x)|p dx → 0 for n →∞.

8.5 Let gn = nχ[0,n−3]. Show that
∫ 1
0 f(x)gn(x) dx → 0 as n → ∞ for all f ∈ L2[0, 1],

but not all f ∈ L1[0, 1].

8.6 Construct an isometry of the Hilbert space `2 onto the Hilbert space L2 [0, 1] and

justify that your map is an isometry.


