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Abstract

In this work on g = F,, 2, the free 2-step nilpotent Lie algebra on n generators,
we use the group of automorphisms to give a basis-free description of the Fourier
Inversion Formula, thereby generalizing and strengthening an example discussed
by Corwin and Greenleaf.

In the first charter, Introduction, we begin with a brief survey of traditional
viewpoint related to this dissertation, then discuss Example 4.3.14 in Corwin &
Greenleaf’s book. It demonstrates how two different bases for F3 5 lead to different
inversion formulas. But the third "more” invariant formula describes Plancherel
measure on a support expressed in terms of rotations, dilations, and translations.
Actually it is not canonical since it still depends on choices of bases for Fjs.
Our goal is to re-describe Plancherel measure on a support expressed in terms of
Aut*(g). We accomplish this in the following two chapters.

The second chapter provides a procedure for re-parametrizing the family of
generic orbits by establishing a one-to-one correspondence between the maximum-
dimensional orbits and the quotient space Adg\Aut*(g)/Stab(ly).

The third chapter provides background material about relatively invariant mea-
sures. Then we prove that Plancherel measure, modeled on the double coset space
Adg\Aut*(g)/Stab(ly), is the essentially unique relatively invariant measure cor-
responding to a specific homomorphism.

The fourth chapter demonstrates that there does not exist an Aut*(g)-invariant
measure on the double coset space Adg\Aut™(g)/Stab(ly) for the example g = F; 5.

Our explicit calculations for F3 are done in Chapter 5 and are in agreement

with the results of the first four chapters. We start by finding an almost global



coordinate patch for Adg\Adg - Stab®™(Z3), then use this patch to construct a right
and left Haar measure on this quotient space. Thus we get its modular function ¢.
A similar process applies to Adg\Aut(g), and we obtain its modular function A.
Hence the ratio of A to ¢ is the restriction of any modular function for any relatively
invariant measure on the double coset space Adg\Aut(g)/Stab*(Z3). Furthermore,
we find a cross-section X for Adg\Aut(g)/Stab®(ly) with general [y € g},,,. Then
we use X to verify the relative invariance for the measure corresponding to that
given in the example of Corwin and Greenleaf for g = F3 5.

In Chapter 6, we illustrate three general properties for F,, » and one additional

result for linear algebra. These properties are used in Chapter 5.
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1. Introduction

We begin with some general remarks about the subject matter of this
dissertation. Harmonic analysis is a very rich subject which can be viewed from
many perspectives. One traditional viewpoint is that harmonic analysis permits

the recovery of a function from its Fourier transform: For each Schwartz function

feSMR),

)= [ Flayda
R
One can readily recover also f(z) for general x simply by replacing f in the

integral by its translation by z. If one does this, then

f@ZLﬂ@WWW

The Real numbers R are an abelian group under addition. When one investigates
this process of Fourier Inversion for general locally compact topological groups,
or for Lie groups, it becomes necessary to replace the 1-dimensional characters
Xa(7) = €™ by the equivalence classes of irreducible unitary representations in
Hilbert space. The collection of these classes is denoted G. If the group G is
neither compact nor abelian, then G typically includes the classes of many
infinite dimensional irreducible representations. There is an abstract Plancherel

theorem (due to Segal) which establishes that

f@zéﬂmmm>

for all suitable functions f, such as Schwartz functions on a Lie group. Here

~

75 = [, f(g)mydg, and the trace of this operator plays the role of f(«) in classical

Fourier inversion.



In order to carry out this Fourier inversion in a meaningful way on particular
classes of Lie groups, it is necessary first to know the representations in G and to
know explicitly the Plancherel measure and its support within G. The
representations of Lie groups are often constructed using the classical process of
Induced Representations, developed by Schur for finite groups and greatly
extended by George Mackey to all locally compact topological groups in the
1940’s and 1950’s. (See [7]) Much effort was expended upon the identification of
G for general nilpotent Lie groups until this was finally achieved by A. A.
Kirillov in his celebrated dissertation [6] under the direction of I. M. Gelfand.
Kirillov showed that if G is nilpotent, then every element of G is induced by a
one-dimensional character of a suitable subgroup M C G. If [ € g* one defines
the character x;(m) = ¢?™(°¢™) and x will induce an irreducible unitary
representation of G if and only if M has maximal dimension so as to make x; a
genuine character. Moreover, the unitary equivalence classes in G are in
one-to-one correspondence with the coadjoint orbits of GG, also called Kirillov
orbits. Thus G can be identified with g* /Ad*(G). The support of the Plancherel
measure i was shown to be a very large collection of orbits, whose union
constitutes a Zariski open subset of g*. All orbits in the support of y are of the
greatest possible dimension, but not every such orbit need be in that support.
One of the features of classical harmonic analysis which is lost in the study of Lie
groups is that G lacks a group structure. (For abelian groups, Gisa group.) In
this dissertation we address that lack. We show that at least for certain types of
nilpotent Lie groups one can create a model of the Plancherel measure on a
quotient space of the automorphism group, Aut(G). When we do this, we show
that the Plancherel measure p is the essentially unique relatively invariant

measure corresponding to the homomorphism which maps each automorphism



A — | det(A)|. The idea arose out of our efforts to understand better an example
of Corwin and Greenleaf, presented in their book [1].

It is an awkward feature of nilpotent harmonic analysis that the description of
the Plancherel measure, and even of the generic orbits on which it is supported,
is dependent on the choice of an arbitrary strong Malcev basis. Corwin &
Greenleaf illustrate this with the following Example 4.3.14 in [1]:

Let g = F32, g2 = [g, 9, and let g* be the linear dual space of g. Pick a basis
{Y1,Y,,Y3} for g/gs, then choose Y; € Yy, Vi = 1,2,3. Let

Zl = [Yé?yé]? Z2 = [Yé?le]a Z3 = [}/17}6]7

which are independent of the choice of Y; € Y;. Then B := {Z, Z5, Z3, Y1, Ys, Y3}
is a strong Malcev basis of g. Let B* := {Z}, Z5, Z5, Y", Y55, Y5} be the dual basis
of B in g*, so that B* is a Jordan-Hélder basis of g*. Let g; = Spang{Y1, Y2, Y3}.
We know go = Spang {71, Zs, Z3}. Let gf = Spang {Y7", Y5", Y5} and

03 = Spang {27, 75, 7).

Corwin & Greenleaf describe the Plancherel measure with respect to this strong
Malcev basis B of g as follows. [ = 21'3:1 VAR Ele B;Y;* is generic with respect
to this basis if and only if a3 # 0, and the Pfaffian for this basis B is given by
Pf*(1) = det B; = a2. The Fourier Inversion Theorem says that for f € S(G), the

Schwartz functions on G,

f(e) = Jralas|TrTa, z; +a 25 +as 25+ 5vy (f)dondasdodBs (1.1)

On the other hand, if we take the strong Malcev basis to be
{Z3, Z5, Z1,Y3,Ys, Y1}, then [ is generic if and only if o # 0. And the
corresponding Pfaffian is given by PfQ(l) = 2. The Fourier Inversion Theorem

now says that

f(e) = [ralor|Tema, 2 4an 25 +as zs 46y (f ) dondasdasdBy (1.2)



Why do these two different formulas, (1.1) and (1.2), give the same result f(e)?
To understand this situation, Corwin & Greenleaf describe how the group
SO(3,R) acts on g (and G) as a group of automorphisms. We discuss on the
following pages how their explanation works. Then we will give a preview of how
we improve and generalize what they have done.

We decompose g = g1 @ go as a sum of vector spaces. Notice that g, is not a Lie
subalgebra of g. Since By := {Y7, Y, Y3} is a basis of gy, we regard g; as
isomorphic to R3 by the map Y —— [Y]s,. Similarly, g, is regarded as isomorphic
to R3 relative to the basis By = {71, Zs, Z3}.

For each o € SO(3,R), we define the map

(c®0):g1Pg —g1Dg by (V,Z2)— (cY,07)

Then we claim that ¢ ® ¢ is an automorphism of g.
It suffices to show that [0, 0Y;| = o([Y;,Y;]), for all pairs (z,7), 1 <i,5 < 3. We

proceed to show this as follows.

For each o € SO(3), we still denote the matrix of o relative to the standard basis

b1 ps Pr
of R°by 0. Let 0 = | p, ps pg |- By the definition of SO(3), we have

P3 Pe DP9

(671! = 0. Then (5= (adjo))" = o, and hence (adjo)" = o since det o = 1. Thus



we get the identity

Ps Ds
det
Ps D9
bs pr
—det
Ps D9
bs P7
det
Ps Ds

It follows that

(oY1, 0Y5)]

(oY, 0Y3]

P2 Ps D
—det det ?
P3 D9 P3
b1 pr p
det —det '
P3 Do Y2
b1 Pr D1
—det det
P2 Ps D2

= [p1Y1 +paYo + psYs, paY1 + psYa + peYs)

P2 Ps P1 P4

Ds

DPe

Y2

Pes

Pa

DPs

= Zy — Zs+

b3 DPe P3s DPe
= prZ1 + psda + poLs

= O'Z3

= o([}1,Y2])

= [paY1 + psYa + peYs, prY1 + psYa + poYs)

Ps Ds Pa D7
A

Ps D9 Ps D9
= D21+ pada+ psls

= 0'Z1

= o([Y2, ¥3])

Pa

b5

b7

Ds

P1 P4

P2 DPs

P3 De

Z3

3

b7

Ds

DP9



loYs,0Y1] = [pY1 + psYa + poYs, p1Y1 + paYa + p3Ys)
D2 DPs b1 Pr p1 Pr
= - Zl + Z2 - Zg
P3s D9 P3s Dy P2 Ps
= paZi + psZa + peZs

= O'ZQ

= o([¥3,Y1])

Thus we have proved that ¢ ® o is in Aut(g).

Similarly, we regard g} and g} as each isomorphic to R? relative to coordinates in
the bases {Y*, Y5, Y5} and {Z}, Z;, Z;} respectively. For each o € SO(3), we
define the dual o* of o on gj and g} by its inverse transpose. Since

o ® o € Aut(g), so is its inverse (0 ® 0)~! = 07! ® 07!, Define the dual of 0 ® o
by its inverse transpose. So we have (0 ® 0)* = 0* ® o*.

Now we give gj an inner product and a corresponding Euclidean metric by
making Y*, Yy, and Y5 orthonormal, and similarly for g5 by making Z7, Z35, and
Z3 orthonormal. Define a linear map A : g5 — g} by A(Z;) = Y;*. For every unit
vector w € g5, let w = an Zf + aaZy + a3 Z3. Then there exists o € SO(3) such
that w = 0*Z3. It follows that

Aw = AlonZ7 + anZi + a3 Z%) = an Y] + aoYy + oYy = o*Y5. So

rw+ tAw = ro*Z5 + to*Ys = (o @ 0)*(rZ5 + tYy5), Vr > 0, Vt € R.

For ly = rZ3 +tYy", its radical t;, = go @ RY3 is an ideal in g. By Theorem 3.2.3.
in [1] we know that Oy, = Iy + tit = Iy + Spang {Yy", Y5'}. For

l=rw+tAw = (0 ® 0)*(rZ; + tY5), its radical

U = Yogo)l, = (0@ 0)ty, = g2 @ R(0Y3) is still an ideal of g. Then

O, =1+t =1+ Spang{c*Y}",0*Ys} = rw + tAw + (Aw)* where (Aw)* is the

plane Spang{c*Y}", 0*Y5} orthogonal to Aw in gj.



Let Opar = {O; : dim O, is maximal}, and g}, = {l : dim O, is mazimal}.
We claim that

{ro+tAw|r >0, te R,w € g, |w| =1}

is a cross-section of Oy qz.

Since | € g},, if and only if I|;, # 0, there always exist unique > 0 and unit
vector w € g} such that I|gy = rw. For each t € R, tAw + (Aw)t is a
two-dimensional plane parallel to (Aw)* in gi. So

g; :U {tAw + (Aw)™* : Vt € R}, and hence there is a unique ¢ € R such that
llg1 € tAw + (Aw)t. Tt follows that [ € rw + tAw + (Aw)t = Opyysan. Therefore
{rw+tAwlr >0,t € R, w € g5, |w| = 1} is a cross-section for Oyy4,, as claimed.
For wy = Z3, lop = rwo + tAwy lies on the orbit O, = rwy + tAwy + RY;" + RYS".
And relative to the basis {Z;, Zs, Z3, Y1, Y5, Y3}, the Pfaffian of [ is given by

Pf%(ly) = r?. Then for every f € S(G),

1 ~

Trmywg+taw (f) = / (f o exp)(rwo + tAwo + (1Y) + 05Y5)dB1ds.

r2 7

Hence

/RTrmwOHAwO(f)dt = /g* %(f o exp) (rwp + A)dA

1

where d\ is normalized Lebesgue measure defined relative to the basis
{Y7, Y5, Y5} on g7
Now for each o € SO(3), since 0 ® o € Aut(g), it follows that
T (080 (rwo-+tAwo) = Trwo+tAwy © (0 ® )7
, and hence
T (owo)(rwo+tAwo) (f) = Trag+taw, (f © (0 ® 7).
So we know that

Tr”(a@o)*(moHAwo)(f ) = TmrwothAwo(f © (U ®o ))-



Thus, relative to the same basis {71, Zy, Z3, Y1, Ya, Y3}, for every general

functional | = rw + tAw

/ Trﬂ'rw—i—tAw(f)dt = / Trﬂ(a@a)*(rwo-‘rtAwo)(f)dt
R R

= / T 7wy ttawy (f 0 (0 @ 0))dt
R

:/g*

1

o (0 ® o) oexp)(rwy+ A\)dA

<~

(foexpo(o ®a))(rwp + A\)dA

*

(f o exp)(ra*wo 4+ o*N)dA

= =
Sl S SIS

(f o exp)(rw + \)dA

I

X3

Note that the last equality holds because Lebesgue measure is rotation-invariant.

So far we get
/R Ters an f)dt = /g * %( Foexpllrw + N\
i
Since g3 is regarded as isomorphic to R?,
dv(r,w) = r?sinedrdpdd

is Lebesgue measure on g;. Multiplying both sides of the above equation by r and

integrating over g5, we get

/92/ I ea0 (f)dtdv(r, w)
= / / (f oexp)(rw + N)dAdv(r,w)
03 /0]

= / / (f oexp)(a Z} + o Z3 + s Z5 + N)dAdaydasdas
R3

_ // (f o expl(l + A)dAdl
95

Hence for every f € S(G), we have

:/g*

.
2 Y9

(F o exp)(l + \)dAdl — / / P e f)dtdv(r, ).
g /R



We now would like to answer the question posed at the beginning: why do
formulas (1.1) and (1.2) give the same result: f(e) 7
For the equation (1.1) we start with the Malcev basis {Z1, Z3, Z3, Y1, Ys, Y3} to

get Ve NU = {anZ} + anZ5 + a3 Z; + B5Y5 : ag # 0}. Since

{rw+tAwlr > 0,t e R, w € g}, |w| =1}

is a cross-section for all orbits of g* that correspond to infinite-dimensional
representations, for each [ € Vp NU, we need to know which element rw + tAw
from this cross-section such that | € O, 4.

Actually for each | = a1 Z7 + aoZy + a3 Z5 + B3Y5 € VN U, let
and let o € SO(3) such that
wi=o0"Zy =L+ 225 + 273,
Then
Ao = Sy + S} + ST,

We want to find ¢ € R such that

(1 Zf + o Zs + a3 Z3) + B3Y5 =1 € Orpiraw = (tw) + tAw + (Aw)*, ie.,

B3Yy € tAw + (Aw)t.

Since the two-dimensional plane tAw + (Aw)* in g} is obtained by pushing the
plane (Aw)* out along the direction Aw, t is the component of the vector 33Y;

on the direction Aw. In other words, t is the value of inner product of vectors

B3Y5 and Aw in g7, i.e., t = (B3Y5", Y + 22V + 23YF) = 2335 Tt follows that



(3 = —=t, and hence df3 = dt. Therefore the equation (1.1) turns out to be

a3
fle) = /Rs/R|Oés|T1"7Talzf+agzg+agzg+53y3*(f)dﬁg(dozldozgdag)
r
= //|a3‘Tr7Trw+tAw(f)|_’dth(’F,w)
g5 /R Qas

= //rTrﬂrw+tAw(f)dtdv(r,w)
g5 /R

If we start with the equation (1.2), a similar argument leads to the same formula.
This answers the question at the start of this section.

Corwin & Greenleaf describe the formula

7o) = / /R FT ()l (7, 0)

as ‘more’ invariant than the other two forms. But it is surely not canonical. It
depends on choices of bases for g, and on the map A as well. Our goal is to
redescribe Plancherel measure on a support expressed in terms of Aut*(g), and to

do this in greater generality.

10



2. Parametrizing Orbits by
Automorphisms

Theorem 2.1. Let g = F,, 9, the free 2-step nilpotent Lie algebra on n
generators, and let g* be its dual space. Let G be the corresponding simply
connected nilpotent Lie group. Let g},,, be the set of all functionals whose orbits
have maximal dimension. Let O, be the set of all orbits of maximal dimension.
Fix lp € g3/4,- Then there is a one-to-one correspondence between the quotient

space Adg\Aut*(g)/Stab(lp) and the set Oy,
Proof. There are two cases depending upon the positive integer n.

Case 1. Suppose n is odd.

Let go = [g, g]: then dim(gy) = @ Pick a Strong Malcev basis
B={X,X,,--,X,} for g through go where m = @ +n. Let

B* ={X7,X5,---, X} } be its dual basis in g*. Then B* is a Jordan-Hélder basis
for g*. Let V; = Spang {X7,,, -+, X, } and V,, = {0}. Since g is the center and
g is two-step, coadjoint orbits in g* can not have dimension greater than n. And
by Lemma 1.3.2. in [1], coadjoint orbits are always of even dimension. Since n is
odd, the maximal dimension of orbits can not be greater than n-1. By definition
generic orbits have maximal dimension in each quotient space g*/Vj. In
particular, each generic orbit has the maximal possible dimension in g*, though
the converse is false. It follows that each generic orbit has dimension n — 1 since

we can achieve the maximum possible dimension n-1 by assigning the basis

element X -1 L tom and giving [ values on the center such that the
2

1
non-degenerate bilinear form has a block-diagonal matrix with block

-1 0

11



Now for each [ and I' € g},,,, dimO; =n — 1 = dim Op. It follows that

dimv; = @ + 1 = dimt; since dim O; = dim(G/R;) = dim g — dim ;. Let

Al andA! be picked such that v; = g, ® RA! and vy = g, ® RAY. Let B; and By
be the non-degenerate skew-symmetric bilinear forms corresponding to [ and [’
living on g/t; and g/t; respectively. By Theorem 6 of Chapter 10 in [5], there
exists a basis {AL, AL, -~ AL} for g/t; such that with respect to this basis the

non-degenerate form B; has the matrix diag(B;, By, - - - ,Ban) where each B; is a

0 1 - -
2 X 2 matrix , and similarly for By using the basis {AY, AV .- A |}
-1 0
Since [ and " € g};,,, We know [ |5, 0 and [ |5,7# 0. Then let’s subtract multiples

of a central vector from each Al and Al to make I(A} — ¢;Z%) = U'(AY — ¢, Z"),

and still denote A! — ¢;Z' and A" — ¢,Z" by Al and AY. Thus we have
I(A) =1'(47)

Vi=1,2,---,n.

Now let’s define two bases for g through go

n

Bl:{[Aé,Aé]11§i<j§n}u{AlhAlQ,...7Al}

and
B ={[Al A" 1<i<j<npu{Al A} .. AL}
Then define the mapping A : g — g by

/
Aj— 4

and

(AL A) — (A7, A7)

12



1 <i<j<n.ltfollows that A € Aut(g) and Ar; = t;. Hence we have the

following identities

(AD(A] AT = 1ATA] AT AT]) = U([AL AY]) = Bi(AL A}) = Bu(AT, AT)

- l,([Ai/v Aé/])

1<i<j<n-—11If j=n, since A, € t; and Aﬁ; € vy, we still have
(AD([A], AL]) = U([AL A5) = 0 = V' ([A], AT]) So (AD)]g, = Ulg,.

And we know also that
(A1) (AY) = 1(ATTAY) = I(AL) = I'(AY)

Vi=1,---,n. Thus we get the relation A*l = I'. Next we claim that A*O; = Oy.
Here we abuse notation to denote by A the two corresponding automorphisms of
g and G respectively. For every x € G, the map 4, : ¢ — xgxr ™! is an inner

automorphism of G. Then we have
(Aoi)(g) = Alzga™) = (Az)(Ag)(Az)™" = (iaz 0 A)(9)

Vg € G. So Ao, =iy, oA Then taking its differential at the unit element we
get the identity A o Ad, = Ady, o A. By using the duality on both sides it

follows that

AAd;, = Ad’, A",
for all x € G. Applying both maps to the functional | we get the relation
A*O; = O 41 = Op as desired. In fact, the relation A*O; = O 4+ holds for all
automorphisms A.

Therefore for every I,1" € g},., there exists an automorphism A of g such that

A*l =1" and A*O;, = Op. Hence Aut*(g) maps g3},,, onto itself.

13



Case 2. Suppose n is even.
By arguments similar to those in the beginning of Case 1., since n is even, each

generic orbit has dimension n: that is n is the maximal dimension for all orbits in

n(n—1) _
2

g*. Now for each [,1" € g},., we have dimt; = dimvy = dim go. Then
t; = g2 = vty since the center go C ;.
Now let B; and By be the non-degenerate skew-symmetric bilinear forms
corresponding to [ and !’ living on g/g, respectively. Then there exists a basis
{AL AL ... ALY} for g/g, giving a canonical matrix for B;, and similarly for By.
Let’s subtract multiples of a central vector from each Al and Al to make
WAL — ;2" =1'(AY — ¢ Z"), and still denote Al — ¢;Z" and AY — ¢, Z" by Al and
AV Thus we have [(A}) = I'(AY), Vi = 1,2, ,n. Then define the map
A:g—gby
Al Al

and

A, AL s A7, AT),

for 1 <i < j <n.Then A € Aut(g) such that A*l =1’ and A*O; = Oy as before.
Thus, by cases 1 and 2 we know that Aut*(g) maps g},,, onto itself.

By hypothesis Iy € g3,,., for every A, B € Aut(g) we know

Aly = B¥ly < B A*ly = Iy & B ' A* € Stab(ly) < A*Stab(ly) = B*Stab(l).
So we obtain that Aut*(g)/Stab(ly) maps ly one-to-one and onto g},,.-

Now let’s prove the mapping

Adg\Aut*(g)/Stab(ly) — Onax
is one-to-one.
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For each double coset Adg, A*Stab(ly) we get an orbit of maximal dimension,
Ad; A%y € Opran. Suppose AdpA*ly = Ad;B*ly, then there exists a group
element g € G such that
A Al = Bl < 1y = A Ad] 1 B*ly < A" Ad; - B* € Stab(l)
& B* € AdjA*Stab(lp).
So B* € Ad; A*Stab(lp), and hence A* and B* are in the same double coset.

Therefore the mapping
Adz\Aut*(g)/Stab(ly) — Oz

is one-to-one. This proves the theorem.
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3. Relative Invariance of Plancherel
Measure

Let S be a topological space and let G be a topological group acting on S. A
measure 4 on S is called a G-invariant measure if for every g € G and for every
measurable subset £ of S, the set gF is measurable and pu(gF) = p(E). It is very
helpful if a non-trivial G-invariant Borel measure on a locally compact space S
exists. But it is possible that no non-trivial invariant measure exists on S. This
can happen already in the special case when G is a locally compact group, H is a
closed subgroup of G and S is the homogeneous space G/H. A measure p on a
homogeneous space G/H is called relatively invariant provided

D(g)u(gF) = u(E) Yg € G and VE C G/H with E measurable. Then it is known
that D is a homomorphism mapping G — R and that p corresponds uniquely
up to a constant factor to the homomorphism D. We call D the modular function
for p.

Theorems (3.1) and (3.2) are proven in Chapter 5 of [4].

Theorem (3.1) Let A be the modular function of the locally compact group G,
and let 0 be the modular function of the closed subgroup H. If there exists a
relatively invariant measure p on G/H, then its modular function D must be a
continuous real character such that D(h) = (A/d)(h) for every h € H.

Theorem (3.2) A necessary and sufficient condition for the existence of a
non-trivial relatively invariant measure p on GG/H with modular function D is
that D is a continuous real character on G such that D(h) = (A/d)(h) for every
h € H.If D satisfies the requirements, the relatively invariant measure associated
with it is essentially uniquely determined by D.

Now we are ready to state and prove the main result of this chapter.
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Theorem (3.3). Let g = F,,5. Fix Iy € g}/,., let i be a copy of Plancherel
measure on the double coset space Adg\Aut*(g)/Stab(lp). Then p is the
essentially unique relatively invariant measure corresponding to the
homomorphism Ad},\Aut*(g) — R* given by A* ——| det A* |. Note.

det(Ad}) =1 for all g € G, so det A* = det A*, V.A € Aut(g).
Proof: For every automorphism A € Aut(g), we want to show that
WAE) =| det A" | W(E)

for all measurable subsets E of Adg,\Aut*(g)/Stab(ly).
For each A € Aut(g) we also denote its corresponding automorphism of G by A.

For every [ € g* we claim that
T p—1%] = T © A

For every [ € g*, choose a polarizer M for [, and let M = exp(M). Then

m = Indf/lxh v where x; s is a character defined on M. It follows that

7TZOA = (Indijl,M>OA

= Ind.ﬁ*l(M)(Xl,M o A)

by Lemma 2.1.3. in [1]. For every X € M, since (x;a 0 A)(exp X) =
xi,m (A(exp X)) = xim(exp(AX)) = e2milAX) — ezm(Ail*l)(X) = XA—l*z,M(eXP X),

it follows further

7'('[0./4 = Indi71(M)XA—1*l’M

= 7T.A71*l
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This proves the claim. Then for every ¢ € S(G) we have

Tar(®) = /G 697 4r1(9)dg
~ / 6(9)(m 0 A)(g)dg
G
= / o(g)m(Ag)dyg
G
= /gb(Ala:)m(a:)d(Alx)
G
= /G(QSOA_I)(a:)m(xNdetA_1|dx

= \detA*]/(qﬁOA_l)(aj)m(x)dx
G
= |det A*|m (o A7)

and hence

Trm g1+ (¢) = | det A*|Trm(po A7)

VA € Aut(g), [ € g*, ¢ € S(G).

Now let D = Adg\Aut*(g)/Stab(ly), note that the group Adg\Aut*(g) acts on
the left on D. By hypothesis |y € g},,., We fix any strong Malcev basis B of g such
that ly € g}, with respect to B. Let Oyen, = {Oi] | € g;,,}. We know Uoco,,, O is
a Zariski-open set in g*, and Plancherel measure pu, as in [1], is supported on
Ogen & Onraz- Then define a copy of p1 on Opree by letting 11(Orrae\Ogen) = 0. By
Theorem 2.1. we know there is a one-to-one correspondence between Q4. and
D. So copy p again onto D, in other words, p is a copy of Plancherel measure on
D. Let Ey = {A* € D| A*ly € gi10s\Gien }» then Ey is a p-nullset. For every

measurable subset £ C D, and every A € Aut(g) , we claim that
WAE) = | det A*|u(E)
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[ e (@@ ) = [ Times@du(ac)
= /[)TTWAI*C*JO(¢)dN(C*)
_ /D | det A | Trme-1, (¢ 0 A )du(CY)
= det '] [ Tomen (00 A )d(C)
= |det A*|(¢p 0 A7H)(e)
= |det A"|p(e)
_ /D Trmeer, (6)] det A*|du(C?)
V ¢ € S(G), where A* means coset Ad%.A* € AdL\Aut*(g) and C* means coset
Ad%C*Stab(ly) € D, and hence
A C*= AdLA*AdLC*Stab(ly) = AdL(A*C*)Stab(ly) =(A*CY).

Thus we get the identity

/l)TrﬂC*lO(qﬁ)du(W c*) :/ Trree, (6) | det A* | du(C*).

D
Then by the Abstract Plancherel Theorem in Chapter 7 of [8], or in [2], one

concludes, since p is essentially unique, that
W(AE) =| det A" | u(E)

for all 4 € Aut(g) and all measurable subsets £ C D. Therefore u is the
essentially unique relatively invariant measure on the double coset space

Adg\Aut*(g)/Stab(ly) corresponding to the homomorphism given by
A* —| det A* |=| det A* |.

Remark 1. This theorem can be generalized readily as follows. Let G' be any

group to which 'the Abstract Plancherel Theorem’ applies. For every A € Aut(g),
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define A*1 = o AL, Vrr € G. Then Tr((A*7)(4)) = | det A|Tr(m(¢ 0 A)). Now
suppose further that for every 7 in the support of Plancherel measure p, the set
{A*1| A € Aut(G)} contains the support of Plancherel measure. Let

Stab(m) = {A € Aut(G)| A*r = w}. Then i can be transported to a new domain
Aut(G)/Stab(r), where u is 0 on the complement of its support. Then the same
argument as at the top of page 15 shows that u(A*E) = |det A*|u(E). Thus u
displays the same relative invariance whenever it can be transported to the
domain Aut(G)/Stab(m). In the case of F,, 2, we have exploited the symmetry of
the group to prove that Aut*(G)m covers the support of the Plancherel measure
whenever 7 is in that support.

Remark 2. Consider the example of the 2n 4+ 1 dimensional Heisenberg group
Hs,, 1, which is not free if n > 1. Let bs,,1 be its Heisenberg algebra which is
spanned by {Z,Y7,---,Y,, X3, -, X,,} with non-trivial brackets [X;, Y] = Z,

Vi =1,---n. Consider the generic representations m; requiring I(Z) # 0. Let 4, be

the usual dilation automorphism, and d; be its dual, i.e.,

X; — \/L;Xi X7 =X
67- . }/; RN \/L;}/; and 5: . )/;* — \/F}/;*
7 %Z 7% —r/s*

Then §7(m;) = w5+ and (6:1)(Z) = rl(Z) # 0. Therefore there exist sufficient
automorphisms for the first remark to apply to all these (non-free!) groups as
well.

Remark 3. Consider the example of 3-step Chain group G generated by

X, Y1,Y,, Z where [X,Y1] =Y, and [X,Y3] = Z generate all non-trivial brackets.
This is neither 2-step nor free. In Example (3.1.12) of [1] it is shown that all the
generic representations m; are given by [ = zZ* + ¢ Y|* with z # 0 and y; € R. Its

radical t; = Spang {Z, Y1}, hence its polarizer is three-dimensional since the
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dimension of polarizer is the average of dimensions of whole algebra and radical.
Since m = Spang{Z, Y2, Y1} is an abelian ideal in g of the correct dimension, it is
a polarizer for each | = 22" + y, Y7".

Now consider the following automorphism 74 . indexed by

ay az
A= € GL(2,R) and e € R given by

0 as

X —aX

Y] — X +a3Y; +eZ
TA,e .

Yo —— (det A)Ys
Z — (a1 det A)Z

\ V

By Kirillov theory we know each generic 7, ,, is induced by a character x. ,,
defined on polarizer m. Then 7, ,, 0Ty = Tty = T(aa det A)zazys ez So any
generic 7 can be carried into any other such representation by a suitable

automorphism. Thus, Remark 1. applies to this case too.
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4. Nonexistence of Invariant Measure

Proposition 4.1. Let g = F3 . For [y € g}, there is no Aut*(g)-invariant
measure on the double coset space Adg\Aut*(g)/Stab(lp).

Proof. Pick a basis B = {Z1, Zy, Z3,Y1,Ys, Y3} for g just as we did before in the
Introduction, and let B* = {7}, Z5, Z5,Y*, V5", Y5} be its dual basis in g*. We
start with the simple case in which [y = Z3, then we will show that the result in

the general case follows immediately. We begin by identifying Stab®(ly) explicitly.

By the definition
Stab*(ly) = {A € Aut(g)| A*ly = lo}
= {AeAut(g)| lo=A"1p}
= {A e Aut(g)] Io(X) = (A1) (X), VX € g}
= {A € Aut(g)| lo(X) =lo(AX), VX € g}
= {AeAut(g)| b((A—-1)(X)) =0, VX € g}
= {Ae€Aut(g)] (A-1):g— ker(lp)}
This says Stab*(ly) is the subgroup of Aut(g) such that the operator after
subtracting the identity from each element maps g into the kernel of .
For ly = Z3, its kernel ker(ly) = Spang{Y1, Y2, Y3, Z1, Z5}. Then for each
A € Stab*(ly), we verify two properties:
AZy € Z3 + Spang{Z, Z} (4.1)
A(ker(ly)) = ker(lp) (4.2)

Since A € Stab*(ly), we have (A — I)(Z3) € ker(ly), so AZs € Zs + ker(ly).
Since each automorphism of g maps g, onto go, it follows

AZs € (Z3 + ker(lp)) N go = Z3 + Spang {21, Z»}. This proves property (4.1).
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For each K € ker(ly) we have lo(AK) = (A7 1)(K) = lo(K) = 0, so

A(ker(ly)) C ker(ly). By hypothesis A € Stab*(ly), so is A~!. Using the above
argument we get A~ (ker(ly)) C ker(ly), and hence ker(ly) C A(ker(ly)). Thus we
obtain A(ker(ly)) = ker(ly) as desired.

For each A € Stab®(ly), since A is also an automorphism of g, we know that .4
maps gs onto go. This reason and the property A(ker(ly)) = ker(ly) together

imply that

-’4|SpanR{Z1,Z2} . SpanR{ZI, ZQ} — SpanR{Zl, ZQ} (43)

By properties (4.1), (4.2), and (4.3) we get a 6 x 6 matrix

0 0 O|p2 ps5 D8

0 0 O|ps ps Do

Then det A = (det Q)(det P) = (det P)?*(det P) = (det P)? by Lemma 6.3. Since
A € Aut(g), A is invertible, and hence so is the matrix P. In other words,
{AY1, AY;, AY3} is linearly independent modulo g,. Since A € Aut(g), this

means A([Y;,Y]]) = [AY;, AY;]. Explicitly,

A(Z)) = A([Yz,Ys]) = [AYs, AY3] = [psY1 + psYa + peYs, prY1 + psYa + pyYs)

= (psp9 — peps)Z1 — (papo — PeP7) Za + (Paps — Pspr) Zs

A(Zy) = A([Ys Y1]) = [AYs, AY1] = [prY1 + psYa + poYs, p1 Y1 + poYs + psYs]

= —(p2py — p3ps) Z1 + (P19 — p3pr)Za — (p1ps — Papr) Zs
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A(Zz) =

= (p2p6 - P3p5)Zl - (p1p6 - p3p4)22 + (P1p5 - p2p4)Z3

Then we get the corresponding matrix

Ps
det
Ds
o
Q= | —det
DPe
Pa
det
b5

Ps
—det
P9
b7
det
DP9
b7
—det
Ds

P2 Ps

P3 D9

b1 pr

P3s D9

b1 pr

D2 Ps

det

—det

det

P2 DPs

P3 De

P1 D4

P3s De

P1 P4

P2 Ps

Since the third row of Q is [0, 0, 1], we obtain three conditions:

Pa D7 b1 Ppr
det =0, —det

Ps Ds P2 Ds

We analyze them by two cases.

Case 1. Suppose p; # 0.

Since we have the conditions

paps — psp7 = 0, pipg —papr =0, pips — paps = 1,

it follows that ps = 2222 and ps = 22224 and hence the first condition

T om p1

h

=0, det

D2

q1

q2

q3

A([Y1,Ys]) = [AY1, AYs] = [p1Yh + p2Yo + ps3Ys, paYs + psYa + peYs)

44

qs

qe

qr

qs

q9

0 = pups — pspr = pa 221 — Lipepay, —Z—Z. Then p; = 0 and pg = 0. So we get the

p1 p1

matrix
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g1 q4 g7 | T T4 r7

q2 Q45 gg | T2 Ts T8

o o0 10 0 O

[Als =
0 0 Ofpr  pa 0

0 0 0 Do 1+pops 0

p1

0 0 0/|ps DPe Do

Since the matrix P is invertible, it follows det P = pg # 0. Hence for each

A € Stab*(Z3) with p; # 0, A has the above form of 6 x 6 matrix relative to the
ordered basis B with the property det A = (det P)? = p3 # 0. Thus, the matrix Q
is completely determined by matrix P, and matrices P and R have a total of 12

variables. Hence dim(Stab*(Z3)) = 12.

Case 2. Suppose p; = 0.
The second and third condition follow that pop; = 0 and papy = —1. Then psy # 0,
and hence p; = 0. So the first condition follows that pyps = 0, then pg = 0 since

P4 = —p% # 0. Thus we get the matrix

g q4 Qg7 |T1 T4 T7
g2 g5 gg| T2 Ts5 T3

o 0 10 0 O

0 0 0|0 —L1 0

0 0 O|p2 ps O

0 0 O|ps ps Dpo

with det A = (det P)* = p3 # 0. So the case p; = 0 corresponds to an
11-dimensional submanifold of the 12-dimensional manifold Stab*(Z3).
From the above two cases we see that we can always use p; as one of the

coordinates in every local chart for Stab*(Z3). If p; # 0, we get the local
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coordinates given in the first case. If p; = 0, we get an 11-dimensional

submanifold of Stab®(Z3) corresponding to p; = 0.

From Theorem 3.3. we know that the modular function D of the double coset
space D := Ad;\Aut*(g)/Stab(lp) is D(A*) = (5)(A*) = |det A*|~! = | det A|
for every A* € Ady\AdY, - Stab(lp), i.e., A € Stab*(ly). And from the previous
two cases, we already got | det A| = [pd], WA € Stab*(ly), which is not identically
1. Therefore there does not exist an invariant measure on D since the modular
functions A and § of Ady,\Aut*(g) and Adg\Adg, - Stab(ly), respectively, do not
agree on the subgroup Ad;\Adg, - Stab(ly) for Iy = Z;. We next show the same
result for general functionals ly € g}/4.-

For each Iy € g},., Wwe know already that there exists an automorphism Ay of g

such that A{Z5 = ly. Then it follows that

Stab*(ly) = {A€ Aut(g)| A*ly = lp}
= {A € Aut(g)| A"AZ; = AZ5}
= {Ao(Ay AA) AT (AT AA) Z5 = 73}
= Ao{ A AA| (A1 AA) Z; = Z3 T A
= Ao{B € Aut(g)| B*Z; = Z:} A;*

= ApStab*(Z)Ay*

So for every A € Stab*(ly), A = ACA;" for some C € Stab*(Z3). And hence
|det A| = | det(ACAG"Y)| = |det C| = |pd|, which is not identically 1 either.
Therefore we obtain the same conclusion that there is no invariant measure on

the double coset space Ad"\ Aut*(g)/Stab(ly).
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5. Explicit Calculations for F3;

Brief Outline. There are seven lemmas and one verification in this long chapter
for g = F35. We make a brief outline here.

By using the matrix format in the Proposition 4.1. ; we find an almost global
coordinate patch for Adg\Adg - Stab*(Z5) in Lemma 5.1. In Lemma 5.2. we find

a right and left Haar measure on Adg\Adg - Stab®(ly) with respect to the

1
Py

]
= ‘ e pp|

coordinate patch in Lemma 5.1. So its modular function is § =
Lemma 5.3. we find an almost global coordinate patch for Adg\Aut(g). Then
with respect to this patch, we figure out a right and left Haar measure on

Adg\Aut(g) in Lemma 5.4. Hence its modular function is A = ‘

In Lemma 5.5. we construct automorphisms pf of g related to automorphisms

0 ® 0. Then we find a cross-section X for Adg\Aut(g)/Stab*(ly) in Lemma 5.6.
Furthermore, in Lemma 5.7. we show to which element of X the composition of
two elements of X corresponds since X is not a group. Then we use this concrete
cross-section to verify the relative invariance for g = F3 2. This is the purpose of
Chapter 5.

Throughout this chapter we have two ways to construct bases for F35. One
involves norms, another does not. We build them here, and later just cite them
for the hypothesis of each lemma.

Construction 1. Let g = F3, g2 = [g, g, and let g* be the dual space of g.
Choose a basis {Y1, Ys, Y3} for g/gs. Pick Y; € Y, Vi = 1,2,3. Let Z; = [Y3,Y3],
Zy = [Y3,Y1], Z3 = [Y1, Y], and these are independent of the choice of Y; € Y;.

Then B := {71, Zy, Z3,Y1,Ys, Y3} is a strong Malcev basis of g through go.
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Let B* :={Z;, 73, Z5, Y[, Y5, Y5} be the dual basis of B in g*, so B* is a
Jordan-Holder basis of g*. We know go = Spang{Z1, Zs, Z3}, let

g1 := Spang{Y1,Y2, Y3}, g5 := Spang {27, Z3, Z3}, and gf := Spang {Y7", Y5, Y'}.
Construction 2. Let g = F39, g2 = [g, g], and let g* be the dual space of g. Give
g a norm respecting Lie bracket, and use the operator norm on g*. Let g; be the
orthogonal complement of g, in g. Choose an orthonormal basis {Y7, Y3, Y3} for
g1, then let Z; = [Y5,Y3], Zo = [V3, Y], and Z3 = [V}, Y3]. Since g is equipped
with a norm respecting bracket (which is defined at the first page of Chapter 6) ,
by Lemma 6.1. it follows that B := {Z;, Zs, Z3, Y1, Y5, Y3} is an orthonormal basis
for g through go. Let B* := {Z}, Z5, Z3, Y*, Y55, Y5} be the dual basis of B in g*,
then B* is also an orthonormal basis for g* by Lemma 6.2. We know

g2 = Spang{Z1, Z2, Z3} and g; = Spang{Y;, Y5, Y3}, let

g5 := Spang{Z}, Z3, Z3} and gj := Spang {Y7", Y5, Y5'}.

Note. If the hypothesis does not require a norm of g to respect the Lie bracket,
then we can just build a basis B* for g* by Construction 1., then give g* a
Euclidean metric and corresponding norm by making B* orthonormal.

Lemma 5.1. Let g = F3 5, and pick a basis B for g just as we did in
Construction 1. Let Cg be the set of all A € Aut(g) such that A relative to the

basis B has 6 x 6 matrix

E(1+paps) —pape pops — (L +pops) |11 14 0
—P4P9 P1P9 P3P4 — P1Pe 0 T's 0
0 0 1 r3 re 0
0 0 0 P1 P4 0
0 0 0 py FEEQ
I 0 0 0 P Pe Py |
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with p; € R, pipg # 0, Vi =1,2,3,4,6,9, and r; € R, Vj = 1,3,4,5,6. We claim

that Cg is an almost global coordinate patch for Adg\Adg - Stab®(Z3).

Proof. Since Adg is normal in Aut(g), and Stab*(Z}) is a subgroup of Aut(g), it
follows their product Adg - Stab*(Z3) is a group. we first need to re-parametrize
cosets Adgs € Adg - Stab™(Z3).

For every X € g, let X = Z?zl 2 Z; + Z?=1 y;Y;. Since g is two-step, we know
Adexp(x) = expladx) = I + adx. Since adxY1 = [X, Y] = ysZy — y2Zs,

adxYs = [X,Y5] = —ysZy + Y1 Z3, adxYs = [X,Ys] = 422, — y1Z,, and

(adx)|g, = 0, it follows

1 00 0 —Ys Y2

[Adexp(X)]B - =

In Proposition 4.1. we have shown already that for almost all s € Stab*(Z3)

E(1+paps) —pape pops — B(L+pops) |11 1a 77

—P4P9 P1Po P3P+ — P1Ps T2 Ts T8

0 0 1 0 0 0

s]s =
0 0 0 P1 D4 0
1+pop
0 0 0 D2 % 0
0 0 0 Y2 DPe Do
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Then

AdGs

3 3
= {Adep)s| X = ZZiZi + Z%Yg, Vzi,yi € R}

=1

== {Adexp(X) S | [AdeXP(X) S] B

where the 3 x 3 matrix

R+ SP
T T4 Ty
- re 15 T8 | T

0 0 0

71+ D3Y2 — P2ys3

= o — P3sY1 + P1Ys

P2Yy1 — P1Y2

/s

i=1

ol

Q ‘ R Q|R+SP
0 ‘ P - 0 P
0 —ys ¥ pr ps O
ys 0 =y | | pp FERO
—Y2 U 0 Ps Pe Do
Ty Peye — TRy 7+ poye
Ts —PeY1 +Pa¥3 T8 — Po¥Y1
17,3—1217491 — Py 0

,Vyz € R}

Since the condition of s € Stab™(Z3) is p1py # 0, we re-coordinate the matrix

R+ SP by letting

§1 = T2 —PpP3y1 +DP1Ys3
So = T7+ DPoYo
S3 = T8 — Poth
Then we have unique solution
1 1
yi =( —7rs)— —s3
P9 Do
1 1
Yo =( ——r7)+ —s9
Do Do
b3 b3
Y3 = (——7”2 + —7’8) + —S81 — —S83
P9 P1Po b1 P1Po
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We get y3 by means of y; and y, since

S1 =Ty —p3y1 + P1yz =12 — Z—grg + 2—333 + p1ys, it follows

- (— b3 — B3
piys = (=12 + Brg) + 51 — Bss.

Let
P = P(p17p27p37p47p67p9)
é = E(Tl,T27T4,T5,T7,T8)
g - §<Sl782783>
P P4 0 reors T7
for each P = | p, 14210”_21”4 0 |,R=1ry, rs rg |,and triple (s;,s2,53).
1
D3 Pe P9 0O 0 0

Then we replace y1, y2, and y3 by their corresponding identities in each entry of

3 x 3 matrix R + SP to obtain

R+ SP = S1 R5(ﬁ,é,§) S3

Let’s figure out the explicit formula for each Ri(ﬁ, R, g), 1=1,3,4,5,6.

—

Rl(ﬁv R7§)

=71+ P3Y2 — P2Y3

p3
p1p9

p3
p1pP9

=17 +p3(—pi97”7+5952)—172(—z%7’2+ 7’8—1—%81— S3)

— b2 p3 p2p3 P2 p3 p2p3
= (r g — Z2ps — rg) — =8 S S
( 1+ p1’ 2 po 7 P1P9 8) ol + po ~2 + p1py 37
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Po Po P9 Po
R4<P7 R> S)
_ 1+paps
=Tyt peYa — — 0 U3
_ 1 1 1+poapy p3 1 p3
=r —=r = — PP =51 —
1+ e 2’7 p982) P1 ( T2+ Lpe T8 T 351 p1p983)
1+p2p4 P6 p3(1+p2pa) 1+p2p4 D6 p3(1+p2pa)
To 4+ 1y — Ly — B2 ) — T2 g0 PP e e
( p3 47 pg' T P3py ) p3 + + pipy 53

- = =

RS(Pa R7 )

=T5 — PeY1 + Days

— — 1 p3 p3
=15 = Po(5 78 — 5o83) + Da(—ra + Porg 4 Lsy — Piosy)
_ P4 P1P6—P3P4 P1P6—P3P4

( p1 2 e P1P9 Ts) + 1+ P1P9 535

R6(ﬁ7 é? g)

__ 14popa
= T Y17 P4l
_ ltpepa1 .. 1 _ _1 1
p1 (pg P9 83) p4< P9 7 + P9 82)
_ (P4 14paps Pa 14+paps
= (o7 — Bgy — TR2Pigy
( T e " ) po 52 pipy O3
S1 0
Let S = 0,ie., | s, | = 0 |- Then we have unique solution
S3 0
1
Y1 = —T8
Py
1
Y2 = ——7TI7
Py
1 D3
Ys = ——Ta+ ——Tg
P P1P9



to make a unique automorphism AdeXp (53, yivi)S in the coset Adgs with

Ad

exp(, 1Y) 5B

B (14 pops) —pape pave — E2(1 + popa) Ri(P,R) R, P,R) 0
—PaPy P1Po PsPa — P16 0 Rs(P,R) 0

0 0 1 Ry(P,R) R¢(P,R) 0

) 0 0 0 D1 Pa 0
0 0 0 D2 1+5_12p4 0

I 0 0 0 P P Do

where each Rj(ﬁ,ﬁ) = Rj(ﬁ R,0),Vj=1,3,4,5,6, ie.,

Rl(ﬁ, ﬁ) = r + p—7°2 _ b3 - P2ps |
p1 Do D1Py
Ry(P.R) = DLy 22y
Dy D9
[ 1+ 1+
Ry(P,R) = —22P, 4 P, s 2 papa)
P1 Po Pipo
Rs(B,R) = —Php, 4y D6 P3P
P P1D9
- = 1+
R¢(P,R) = Ps e+ P2p4r8
DP9 P1P9

-,

Notice that Ry(P, R,S) = Ri(P, R) + { a linear function in s; with rational

coefficients in p; }

In summary, for each s € Stab*(Z3) with [s]g = such that
p pe 0O
p1po # 0 where P = | 5, 1+;’_2P4 o |,
1
ps Ps P9
E(1 4 pops) —pape pavs — E2(1 + popa) ryory T7
Q= —DPapy 1Py P3P4 — P1D6 cand R= 1 ry r5 1y
0 0 1 0 0 O
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we have the coset

AdGS

= {Adexp(zle in;)S| Y € R, /L == 1, 2, 3}

Y1 = pLg?"s - 1%983
= et g -
with [AdeXP(Zle in:L)S]B =
Rl(ﬁvéag) R4(ﬁ7é7§) 52
R= s Rs(P,R,S) s; |- Let S =0, then we have unique
R3(ﬁaéa§) Rﬁ(ﬁ7é7§) 0
(y1, Y2, y3) to make unique Adexp(23:1 sy S € Adgs with
R .= 0 Rs(P,R) 0 |- Thus for each s € Stab"™(Z3), we get unique

Ry(P,R) R¢(P,R) 0

automorphism Adexp@?:l yivnS € Adgs. Since each entry p; of P33 and r; of Rsy3
varies in R with pipg # 0, from the formula we know each Rk(ﬁ, ﬁ) also varies in
R,Vi=1,2,3,4,6,9,7=1,2,4,57,8, k=1,3,4,5,6. Since each entry in (J3x3
depends on p;, let all p; and r; vary in R (p1pg # 0), we get almost the whole
group Stab*(Z3) except a subset with measure zero. Since we already got unique

automorphism from each coset Adgs, which automorphism depends on each p;
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and Ry, let C's be the collection of all those unique automorphisms. Explicitly,

Cs = {A € Aut(g)|p;, Rr € R (pipo #0), Vi =1,2,3,4,6,9, Vk =1,3,4,5,6}

with

Po(1+pops) —popo pops — 2(1+popa) |[Ri Ry 0

—PaPg P1P9 P3p4 — P1De 0 Rs 0

0 0 1 Rg R6 0

[A]s =
0 0 0 D1 D4 0
14+
0 0 0 py LR
0 0 0 b3 DPe Po

We next verify that different elements of C's lie on different cosets. If this is done,
then we obtain an almost global coordinate patch for Adg\Adg - Stab™(Z3).

For every distinct A, A" € Cg, we know A € Adgs and A’ € Adgs’ for some

Q RY Q! R
S,Sl € Stab*(Zék) Let [A]B = 3x3 3x3 and [A/]B _ 3x3 3x3

/
03><3 P3><3 03><3 P3><3

as above matrix. Then Adgs = {Ad,s|[Adys]|s = VS € R?} and

Adgs’ = {Ad,s'|[Ad,s |5 = VS € R3}. Since A and A’ are

distinct, it requires that at least one p; # p; or R; # R}. If p; # p; for some

i€{1,2,3,4,6,9}, then Psy3 # P4, 3, so Adgs # Adgs’. Suppose p; = p,

Vi=1,2,3,4,6,9, ie., P = P.If R; # R, for some j € {1,3,4,5,6}. For

example,
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R0 - Dy L2, 4 22
P Po P1P9

=
"~
=
L
I
=
"~

= R(P,R.S)
= R\(P,R.S)

So Ry(P,R,S) # R,(P,R'S), then Rsy3 # R}, 5, and hence Adgs # Adgs'.
Similarly for other cases R; # R. with i = 3,4,5,6, we obtain the same result.
Therefore different elements of C's always lie on different cosets. One concludes

that Cg is an almost global coordinate patch for Adg\Adg - Stab®(Z3).

Lemma 5.2. The previous lemma says that Cs is an almost global coordinate

patch for Adg\Adg - Stab®(Z5). With respect to Cs we claim that
pigdpl dpsdpsdpsdpedpedridrsdrydrsdre

is a left Haar measure and
L dpy dpsdpsdpadpedpydry drsdrdrsdrg

is a right Haar measure on Adg\Adg - Stab*™(Z3).

Proof. Given A, € Cg, for each A € Cg, let A = AyA. Since Cy is not a group, A
may not be in Cs. We want to get the corresponding automorphism A’
associated with A such that A’ € Cs. Then we can calculate the determinant of
the Jacobian of the map A —— A’ at the point A in order to figure out a left

Haar measure on the quotient group Adg\Adg - Stab™(Z3).
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Given Ay € Cg, for each A € Cg, we know Ay € Adgsy and A € Adgs for some

50,5 € Stab*(Z3). Then A € (Adgso)(Adgs) = Adg(ses). Let

[Aols =
a ay 0 cp ¢ 0 y4 y2
where A = | ¢, 1+s_12a4 0,C=10 ¢ 0| P=|np 1+5_12p4
as Qe Qg i c3 ¢ 0 D3 Pe
ry ra 0

0

Do

R=10 r 0 |,andB and Q are determined by A and P respectively,

T3 7”60

just like matrix formula in the collection C's. Then

§ B‘C’ Q‘R BQ‘BRJrCP Qs | Raxs
[Als = = =
O‘A O‘P 0 ‘ AP O3x3 | Pixs
R ~ Q/ é Q/ R
Since A € Adg(sps) with [A]lg = |— , let [sos]g =
0| P 0P
reory oy
where R’ is an unknown 3 x 3 matrix | ¢} rh rh |- Then
0 0 0
Adg(sps)
Rl(P/7 Rlv g) R4(P/7 /7 _’\) 59
Q53 51 R5(]3’, R, §) S3
= {Ady(s08)|[Ady(s05)]5 = o L
R3(P',R',S) Re¢(P,R,S) O

/
O3><3 P3><3

37
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Thus, the corresponding automorphism A" € Adg(sps) associated with A in the

coordinate patch Cg has the matrix

/ — - -

3x3 0 Rs(P',R',0) 0

/
03><3 P3><3

Note that we still have not known each R;(P', R, () yet, since 3 x 3 matrix R is

unknown. But we will figure out later. First, let’s calculate matrices P’ and R.

P/
- A3><3P3><3
a (7 0 D1 P4 0
— 14+aza 14-pap.
w g 0|y M0
as Qe Q9 V& Pe Po
1+papy 0
a1p1 + asps a1p4 + ay— ==
— 1+asza 1+asays 1+popa
O i i Qgpy + = B = 0
1+pops
aszp1 + agpe + agps  asps + ag o + agps  a9Pg
/ /
Y4 P4 0
[ / 1+php) 0
Y2 v,
/ / /
Ps Ps Do
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1+

For the entry 2% of the last matrix, we need to check it equals

Py
QP4 + _1+512a4 —Hﬁfp L.
1 + php)
2
B 1+ (asp1 + ”jf“‘*pz)(alm + a4—1+512p4)
a1p1 + a4Pp2
_ maspips + Apaapaps N 1+ asay + (1 4 agay)peps + asps 1+(11112a4 1+512p4
a1P1 + a4Po a1p1 + a4po
1+ azas 1+ papy
= asps+
a1 b1
For the matrix R
R
= BR+CP
Z—?(l + CLQCL4) —Qao09 A0 — Z—i’(l + CLQCL4) 1T T4 O
= —Qy409 a1ag asa4 — A10g 0 r5 O
0 0 1 s Tg 0

c1 ¢ 0 b1 2 0

+ 0 Cs 0 Do 1+pops 0

p1

c3 ¢ 0 D3 Pe Do

~/ ~/
rn 1Ty 0
— ~1 =
Ty 15 0
~/ ~/
s 16 0

where

7= 2(1+ asas)ry + (azas — 2(1 + azaq))rs + c1p1 + capo

=~/
Th = —agagry + (azay — ajag)rs + cspo
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T4 =13+ Cc3p1 + CoPa

~/ __ a a 14-popy
= a—"i(l + agay)ry — asagrs + (agag — a—?(l + asay))re + c1ps + 04—p1p

7:;3 = —Qa409Ty + a1a9Ts + (CL3(14 — alag)rﬁ —+ C5—1+[1)012p4
flG = Tg + C3ps + CG—1+§12p4
- - Q" R
Since A € Adg(sps) with [A]g = , it follows
0o P
R\(P,R,S) Ry(P,R,S) s, 51
Re { 51 R5(ﬁ',ﬁl7§) s3 | - S = sy | € R3}
Rs(P,R.,S) Re(P,R,S) 0 53
7
Thusif welet S=| ¢ |, we should get five equations: 7, = Rk(ﬁ’, R, §),
0

k=1,3,4,5,6.
Next, let’s try to get Rk(ﬁ’, R, 6), and recall that

Rk(ﬁ’, R, 5’) = Rk(ﬁ’, R, 6) + {linear function in s;}, Vi = 1,2, 3.

T = %?(1 + agay)ry + (azas — Z—‘I’(l + aga4))rs + c1p1 + Capo
= R,(P,R,S)

= Ry(P R,0)— Zs;+%.0+25.0
’ ’ P Po P1Pg ’
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it follows
Ri(P, R 0)
= Z—?(l + CLQCL4)7"1 + (CLQCLG — Z—?(l + a2a4))7“3 + C1P1 + CyP2 + Z—?sl

= (1 + agaq)ry + (aza6 — (1 + azaq))rs + c1p1 + capo

appy ++T22%4
e, (—aaagry + (azay — aiag)rs + csps)
a2p1+wpz
= (Z—?(l + a2a4) - a4agw)r1
asp +1+a2a4 ) .
+(azas — (1 + azaq) + (azas — ala(j)ﬁ)m + rational(P)

agpi azpi+aep2 : BJ
= — — =T ratlonal P .
a1p1+aqp2 " a1p1taqp2 3 + ( )

Since

7 =13+ csp1 + cgp2 = Ry(P', R, S) = Ra(P, I O)——é'o—p—?-o,

Pg

it follows

Rg(ﬁ’, R, 0) = r3 + cspy + cgpz = 5 + rational(f’).

7y = (1 + agay)ry — azagrs + (agas — (1 + azaq))r + c1ps + ca— 220 +p2p4

= R4(ﬁ/, él? g)

— R4(ﬁl,é/,6) . 1+P2p48 + P6 0+ pg(;/‘gplzpz;) -0

1Py

14+-php) 14+asag 1+paps
andweknowp—f4—ap4+ ot LR,

it follows

R4(ﬁ/7 é/a 6)

Ltpops | 14+-phyp) 51

— Z—?(l + a2a4)r4 — Q20975 + (agaﬁ — Z—?(l + a2a4))r6 + C1P4 —+ Cy pl p,12
+P2p4
= 22(1 4 agaq)ry — azagrs + (azas — 52(1 + agas))re + c1ps + ¢4
l+agay 1+popy
a2p4+T?
—Q4Q9T a3d4 — Q10¢)T3 + C
a1p1+aips (—agagry + (agay 1G6)73 + C5p2)
aspat 1tagay 1+popy aspat 1+a2a4 14popy
_ 2 aq 21 — aa P
= ~aly aipi+aapz 1+ (A304 — (106 a1p1+a4P2 3
+2(1 + agaq)ry — asagrs + (azsag — —(1 + asay))re + rational(P).
al
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Since

= —QA40Q9T4 + a109Ts + (a3a4 — a1a6)7‘6 + Cg———
==
- R5(P )

+P2p4
= Rs(P', R/, 0) + Zesy + B ),
it follows
SR
RE)(P ) R ) 0)
__aar+a +< _ ) + +P2P4_P_21
= 4A9T4 14975 aza4 — a10a6)7s T Cs p/181
= —Qa409T4 -+ a1a9Ts + (a3a4 — alaﬁ)rﬁ —+ Cy— +p2p4
1+popg
_EPY 5 (—agagrs + (asas — a1ag)rs + csps)
ai1pi+aap2
a1p4+a471+512p4 alp4+a471+§fp4
= Q4G9 a1p1+aqp2 L= (CL3(I4 B alaﬁ) a1p1+aqp2 s
—agagry + ajagrs + (azay — ayag)re + rational(P)
Since

1
Tl =16 + c3py + coTIL2EL

p1
= R6<ﬁ/> é,> g)

= Rg(P', R, 0) —

/ 1 U
0 — = rn .,
Pg P1Pg
it follows
—»/ —»/ .
R6(P ) R ) O)
1+popa
=Tg + C3P4 + cg

p1

— rg + rational(P)

Thus we obtain all Ry, (P, R',0), and hence we get the corresponding
A’ € Adg(ses) associated with A= AyA such that A’ € Cg
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Then the determinant of the Jacobian of the map A —— A’ at point A is

det

_8(p/1,p/27péapipp,67pé7 R17 R37 R47 R5) Rﬁ)

5(291,292,2937174,176,]?9, T1,73,74,T5, 7“6)

_ op
<$ﬁ>6><6
(#).. ()

L \ 9P /5x6 O ) 5x5

1 O6x5
et
Op;

Let’s calculate both determinants.

o
det ﬁ}
| Op; 6x6
_ et a(pﬁ,pé,pg,pg,p%,pé)}
| O(p1, P2, D3, Pas D6, Do)
ay ay 0
as 1+512a4 O
a3 73 Qg
= det
S T
e
0 0 0
= ag-ag-(a1+a422)~a9-det
Y41

B a1p1 + asps
’ b1
/
(det A2

b1
(det P')’py
(det P)3py

43

} = det

(97']'

0 0
0 0
0 0

ap +Cl4z—? 0

p2
as + ag 1 Qag
0 0
aq Q4
ay 14+azaq

al

= det {%} det PRZ}
6x6 5x5




det 8Ri]
| Or; 5%5

a(Rla R37 R47 R57 R6)
= det
8(7’1, 3,74, 75, r6)
__a9p1 * 0 0 0
aipi1taqp2
0 1 0 0 0
l+agay 1+popy
J’_ii
= det | — T e 71 x % — _ a3
gy —— D1+ azas) —azayg asas — (1 + azas)
apcra
409 Taups 409 a1a9 aszay4 — a10¢
0 0 0 0 1
agp1 0 0
a1p1taqp2
1tagay 1+popy
Jrii
= det | _ a2p4 ay Pl ag _
a9 a1p1+a4p2 ai (1 + a2a4) A2y
a1p4+a41+1972m
L M e, s 1o
agpP1
= P (@31 + avas) — azasad)
a1p1 + a4Po
3 D1
e ag—
a1p1 + aap2
b
== (det A)g—/
Y4
(det Pl>3p1
(det P)3p}
Hence

det

a(pll,pé,pg,pil,p%,pé,Rl,Rg,R4,R5,R6):| — det |:ap;:| det |:8Rl:|
a(Pl’P2>P3>P4>P6>P9,7’1,7“3,7"4,7’5,7"6) apj 6x6 87“3‘ 5%5
(det P')°p) (det P')°p1  (det P')°  pg
(det P)3p; (det P)3py  (det P)  p$§

By the explanation at page 251. in [4], one concludes that
I,Lgdpl dpadpsdpsdpedpgdridrsdradrsdre

is a left Haar measure on Adg\Adg - Stab™(Z5). Next step we would like to find a

right Haar measure with respect to the same patch Cl.
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Given A, € Cg, for each A € Cyg, let A = AA,. But A may not be in Cg, we

want to get the corresponding A’ associated with A such that A’ € Cs. Since

A € Adgs and Ay € Adgs, for some s, 59 € Stab*(Z2), we have A € Adg(sso).

Q R
Let [.A}B _ 3x3 3x3
03x3 f%xS

~ R ]
[Als = [AAo|s = ¢

0 P

Qéxi& R3><3

/
03><3 P3><3

and hence we can let [ssglg =

/ / /
Ty 7

with the form rhorl Tl

0 0 O
Adg(sso)

= {Adg(sso) [[Ady(sso)|s =

B X C X
and [Ao)g = P3PS o8 before. Then
O3><3 A3><3
B C QB QC+RA
0 0 PA
/ RI
3%x3 3%x3 , . .
where R, 5 is an unknown matrix
O3xs  Pax
. Then

Ri(P',RS) Ry(P.RS)
Qéxi& S1 R5(ﬁ/7§/7

!
O3><3 P3><3

=,

S)

.S € R?}

And the corresponding A’ € Cy associated with A has the matrix

Qéx?) 0

033
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Notice that we still have not known each Rk(ﬁ/ R 0) yet, but we will figure out

later. First, let’s calculate matrices P’ and R.

p
= PA
p1 Pa 0 ap ay 0
= Do 1J’]’;—f”4 0 as 1+§—12“4 0
| P3 Pe DP9 az  ag Qg
arp1 + aspy aspy + 2%y, 0
= ap2 + ag— == +p2p4 a4P2 + ltf—fwltf—fm 0
| a1p3 + agps + aspg  asps + H2aip, + agpy  agpy
iy 0
= g S0
Py Ps P

We need to check

1+ php!

P

1+agay 1+paps

the entry % of the last matrix equal to asps + ” -

1

4

1 + (a1p2 +CL2 +p2p4>(a 12 + 1+a2a4p4)

1+ aa

a1p1 + aoPy

ap1P2 + a2a4(1 + p2p4) + (1 + a2a4)p2p4 + ay 1+pap4

jat

1+a2a4

—. P4

a4P2 (al

a1p1 + GoPy

1+ agps) + (1 4 agay)(1 4 papy) + agpy——2294 1+a2a4 14+pops

P1

a1p1 + Gy
14+ azas 1+ papy

A4 P2

a1 P1
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For the 3 x 3 matrix R

R
= QC+ RA
P21+ paps) —pape pops — E2(1+ paps) a
- —Papo P1P9 P3P+ — P1Ds 0
0 0 1 c3
r1 ra 0 a Qg 0
+1 0 r5 0 ay e Q)
rg re 0 as  ag Qg
0
= |7 %0
™ 7 0

where
7y = a1r + asry + 015;—?(1 + paps) + c3(paps — f,—f(l + paps))

T = agrs — c1paPy + c3(P3ps — P1Ps)

fé:CL1T3+G2T6+Cg

1+

Cy 0
Cs 0
Cg 0

Ty = agry + =24y + B (1 + paps) — cspapo + co(p2ps — 52 (1 + pops))

1+asaq

Py = “E2%rs — capapy + C5p1py + C6(P3pa — P1Ps)

~/ __ 1+asaq
Tg = Q4T3 + af T¢ + Cg

. . Q R
Since A € Adg(ssg) with [A]g = , it follows
0o P
Ri(P.R,S) Ry(P.R,S) sy s1
R € { S1 R5(15/, .S) s §= S2
Ry(P.R,S) Rs(P.R,S) 0 53

€ R%}



=~/

Thus if we let § — 0 |, we should get five equations: 7, =

0

—

k=1,3,4,5,6. From these equations we can get Rk(ﬁ’, R, 0).

Since

Py = air + agrs + 1 2 (1 + popa) + c3(paps — B (1 + paps))

= Rl(ﬁ/7 é/> 5)

_ BB _ Pa P Paps

—Rl(P,R,O) p,?sl%—pg O—FZ:ZPZ O,
it follows

Ri(P, R'0)

= airy + agry + 012—?(1 + paps) + c3(paps — _(1 + papa))

1+pop.
a1p2+a2%

T (@215 — c1papy + c3(P3ps — P1p6))

_ arazpipa+a3(1+paps) . 5]
= a1y + agry + —— U s + rational(P).

Since

fé :CL17’3—|—(12T6—|—C3
= Ry(P, R, S)
:Rg(P’,R’,O)—i—é- gZ-O,

it follows
Ry(P', R’ 0)

= a1T3 + Qgrg + C3.

Since

1+a2a4

7y = aqr + ry+ C4 (1 + papa) — cspapy + c6(P2ps —
= Ry(P, R, 5)
R R,0) - Mgk, 1 204 B
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+ 1 1+
and we know —222 — ¢ 4P2 + 14agaq 1+paps
it follows

ay

p1
Ry(P',R'0)

1
_a4,r,1+ +0«2a4

T4 + C4
1 1
aspat +a2a4 +pPapg

2 (14 papa) — csp2py + co(p2pe — B2 (1 + paps))
P1
a1p1+a4p2
= Q4T + 1+;12a47’4 + as

(agrs — c1papg + c3(P3ps — P1Ds))
a2p4+

1+agay 1+popy

aj pP1 3 >
rational(P
ai1p1taqp2 T's + ( )
Since
~/
re=

= L®aiy. _ cipipg + cspipe + co(P3ps — P1ps)
— R5(ﬁ/7 é,7 g)

—Rs(P', R, 0) +

S + p1p; pp3p4 i 07
it follows
Rs(P', R, 0)
— lfagas,. —c +e +C( _ p)
5 4P4P9 501P9 6\P3P4 — P1De
1+agay
a4prt—g = P4
- aosT’s — C C —
epras— (aars — c1papy + c3(psps — pipe))
2“4
_ (1+a2a4 —a a4p1+ P4
ail 2 a1p1+a2p4
— P1
a1pi1+azpa

)rs + rational(P)
rs + rational(P)

Since
—»/ —»/ -
- R6<P 7R 9 S)

= R¢(P',R',0) —

P!
Py

1+php) 0
Py 0 PPy )
it follows
—»/ —»/ -,
RG(P ) R ) O)
= ayr3 + 1+a2a4T6 + ¢cs.
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Thus we obtain all Rk(ﬁ’, R, 6), k=1,3,4,5,6, and hence we get the

corresponding A" € Adg(ssg) associated with A = AA, such that A’ € Cg.

Let’s calculate both det [g%%] and det [%} .
716x6 7 15x5

det [api]
Op; 6x6

aq 0 0 ao 0 0
—a 14+pops +aokt p2 0 0
273 a1 a2y, a2p,
0 0 ai 0 as as
= det
ay 0 0 H@:a 0 0
0 0 ay 0 lJr;L_12a4 Qg
0 0 0 0 0 ag
aq 0 a9 0
0 aq 0 asg
= ag(al—i-ag&)det
D1 a4 0 1+212a4 0
] 0 aq 0 _1+512a4 |
ay 0 a9 0 a as

= ag(a1+a2§—4){a1det 0 ltaas +azdet | g, 0 0 }
1

al

ag 0 o 0 a4 HH2u
14 asaq)?  asas(l + asa
= ag(a1+a2]2){a1(( 201)” _ 2t 2 4))+a2(a2ai—a4(1+a2a4))}
b1 ay a

P
/
= (det A)2
P
_ det P'p)
N deth1
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det {6}%,-]
5%x5

T'j
a; O as * 0
0 aq 0 0 (05}
= det a; O _1+;112a4 * 0
p1
0 0 0 ai1pi1+azpa 0
| 0 a0 0  Hoew
aq 0 a9 0
0 aq 0 (05}
= P et
ai1p1 + Py a, (O ltazas 0
al
1+
i 0 ay 0 512&4
a; 0 as 0 a1 a
b1
= ——Jajdet | (o 1ftaa 0 +asdet | g, 0 0
a1p1+a2p4{ a1 4 }
ay 0 —Hgf““ 0 ay _1+512a4
_ P1
a1p1 + aopy
_
i

Hence the determinant of the Jacobian of the map A —— A’ at each point A is

det

5(pi,p’2,pé,pi;,pé,pé,Rl,Rg,R4,R5,R6)} _ det {3192} det [GR@}
O(p1, P2, D3, P4, P6; P9, T1, T3, T4, T, T6) ;i exe orj | sys
(det P')pip1  det P pj
(det P)py p},  det P po

Therefore pigdpldpgdpgdp4dp6dp9dr1dr3d7’4dr5dr6 is a right Haar measure on
Adg\Adg - Stab™(Z3).
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Lemma 5.3. Let g = F3 4, choose a basis B for g like we did in Construction 1.

Let C'4 be the collection of all automorphisms A such that

pspy —peps  —(p2po —psps)  peps —Ppsps |11 T4 0
—(papo — pepr) P1P9 — DP3p7 —(p1ps —p3pa) | O 75 O
Paps — Psp7 —(p1ps — pa2pr) P1Ps — P2p4 s Te T9
0 0 0 p1 Pa D1

0 0 0 P2 Ps D8

0 0 0 P3 Pe D9

Vpi,rj € R with pg(pipg — pspr)(det P) #0,i=1,2,---.,9,j=1,3,4,5,6,9.

Claim that C4 is an almost global coordinate patch for Adg\Aut(g).

Proof. For every X € g, let X = Zle 22 + Zle y;Y;. Since g is two-step, we

showed already in Lemma 4.1. relative to the basis B, Adexp(x) has matrix

[Adexp(X )] B

Q3><3 -

R3><3 =

0 —ys
= where S3x3 = |y, 0 -y
—Y% 0
For each A € Aut(g), let [A]; = where P3y3 =
O3x3 | Psx3
PsP9 — DePs —(p2po — P3Ps)  P2Ps — P3Ds
—(paps — psp7)  P1po —pspr —(pips — papa) |- a0d
P4aps — DPsP7 —(p1ps — papr) P1Ps — P2P4
Tt T4 T7
ry Ts T8 |- Lhen
rs Te To

52

b1

D2

b3

D4

Ds

DPe

b7

Yz

Do



I‘S Q‘R Q‘R+SP

Y

[Adexp(x)A] 5 =

O‘] O‘P 0‘ P

and hence

AdgA

= {Adepy) Al X =320 22+ 320 uYi, Vi, 2 € R}

Q|R+SP '
= {Adexpx) Al [Adexpx) A 5 = , Vg €R, i=1,23}
0 P
For the 3 x 3 matrix
R+ SP
e T4 Ty 0 —y3 P1 P4 Pr

=\l re 15 18 | T Y3 0 —un P2 Ps Ps

r3s Te To9 —Y2 WU 0 P3 Pe DP9

1+ P3Y2 — P2Ys T4+ PeY2 — P5Y3 T7 + PolY2 — P83

= | "o —Dp3y1 +D1Ys Ts — DeY1 t PaY2 Ts — Poy1 + PrY3

| 73t P2Y1 —P1Y2 Yo+ PsY1 — PaY2 To + PsY1 — Pry2

In order to re-coordinate the matrix R + SP, we need to put restrictions on some

entries of P. We choose the condition for P is

b1 p
P9 # 0 and 0 := det P # 0

P3 D9
Then let

S$1 = T2 — Psy1 + P1ys
So = T§ — PoY1 + P7Y3

S3 = T7+ PoY2 — PsYs3
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Under the restrictions pg # 0 and 0 = pi1pg — p3p7r # 0, we get

—Pp7 P1 b7 P1
= (— —8 — —S§
U1 ( s 9 + 57“8)-1- 681 5 2
—Ds 1 P3Ds Ds —Dp3ps 1
Yo = (——ro— —r7+—2rg)+—s1+ Sg+ —3S3
’ ( 5 P9 ! P90 ) 0 P90 Py
_(TPo, B3y Do D3
ys = ( 5 7’2+5r8)+581 552

Thus, we replace v, 12, and y3 by the above corresponding identity in each entry

of R+ SP, and denote

!

P := P(py,p2,- -+ ,py) corresponding to matrix Piys,
R .= é(rl, T9,+ -+ ,Tg9) corresponding to matrix Rsys,
g .= 5'(51, S9, 83) corresponding to triple (sy, s2, s3).

Then we can denote matrix

R+SP: 51 R5(ﬁ7ﬁ7§) 592

, and hence

AdgA

= {Ad, Al [Ad Al =

R3}

Let’s figure out the explicit formula for each Rk(ﬁ, R, g), k=1,3,4,5,6,9.
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—

Rl(ﬁa R7 g)
= 71+ D3Y2 — P2Y3
—T1+p3<( TQ— _r7+p3p8r8>+1§8 + pspss +—83)

—p2((Zra2 + Birg) + Bs1 — Bso)

_ (7’1 + pnggpaps Py — By p3(p21;2gp3p8)7“g)

_p2pggp3ps 51+ Z_zsg + ps(p2p9—p3ps)82’

9o

- =

R3(Pa R7 ,S_")
=73+ P2y1 — P1Y2

=713+ pa((Fro + Brg) + Fsp — Bsy)

_p1(< 712__7a7+173p8 8)+ Peg + P3p882+p%83>

P1P8—P2PT P1(P2p9—p3p8)
= (PEGEEI Ty + g o Dhrg + BPEROSEEy)

_plpsEpzm Plg, P1(p2p9—p3ps) s

S J—
1 P9 p9d ’

- =

Ry(P,R,S)

= T4 + PeY2 — P5Y3

=14+ po((F2ra — ooy + BErg) + Bsy  PoE sy 4 Lsy)

—ps (=212 + Brg) + Bs1 — Bsy)

P3(p5p9—P6ps) 7"8)

— ( P5P9—PePpPs
) P9d

y4s
7"2—1-7“4—[)—91“7—

_Pspggpeps 51+ ]3_283 + ps(P5p9—p6p8)32

9o ’

- =

R5(P7R7§)
=75 — PeY1 + PaY3
=15 — pe((Fro + Brg) + sy — Blsy)

+p4(( 7’2 + —7”8> + %81 — 2?82)

— (_ P4PY gp6p7 To + 75 — P1Pe gp3p4 7"8)

Papo —pePt P1pP6 —p3p4
+ 5 s1+ 5 S,
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—

R6(ﬁa R7 g)
=76 + P5Y1 — PaY2

=T6 +p5(( T2+p17“8)+—81—?82)

—ps,. 1 psps . ps —p3ps 1
__ (Paps—pspr P1P5P9—P3P4P8
= (T“’?“z + 76 + 7“7 R T3)
_ PaPS—P5PT . _ Pa . _ P1P5P9—P3P4Ps
5 Ol py93 Pod 525

Ry(P, R, S)
=T9 + PsgY1 — P7Y2
=19+ ps((=F7r2 + Brs) + Brs1 — Bs)

—p7((—7’2 — —7"7 + p3p8 ) + S + poSS + —83)

+ Dorg +1g) — Pisy — Phss.

= (o7 b

Since S varying all R® makes a coset AdgA, pick S = 0, then we have unique

solution (y1, y2,y3) where

—Pp7 D1

Y1 = ro + rg
P1P9 — P3pP7 P1P9 — P3P7
—Ds 1 P3ps
Y = ————————Tryg— —Ir7+ rs
P1Po — P3Pt Do Do (Plpg - p3p7)
—DP9 Ps3
Yys = T2 + rs

Db1p9 — Papr P1p9 — pP3p7
to make a unique automorphism Ad, 52 .y.)A € AdgA for each A € Aut(g)

satisfying the restriction pg(p1pe — p3pr) 7& 0 with

Ri(P,R) R4(P,R) 0
@sx3 0 Rs(P, R) 0
Adexp S 1in¢)A B: oo oo N
R3(P,R) R¢(P,R) Ro(P,R)
O3x3 Py 3

where each Rk(ﬁ, ﬁ) = Rk(ﬁ, R, 6), k=1,3,4,5,6,9.
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R, (P, R) L+ P2P9=P3P8 . P3. P3(p2p9—Pp3ps)
P1P9—P3D7 P9 P9 (P1P9—P3p7)
P.R) — PWPs—p2p1,. 1 m p1(p2po—psps)
R3( ’R) pPipo—papr | 2 RRE + 7+ P9 (P1P9—P3D7)
ﬁ 3) P5P9—PG6DS . ry— Py p3(Pspo—peps)
R4( ’R) P1p9—p3p7 | 2 + 74 po' | po(pipo—pap7)
Ro(P.F) = ety 4 gy — o
Re(P. R) — baps—pspr r 7" P1P5P9—P3Paps
6( ! ) P1P9—P3PT7 T2+ 6+ + P9 (P1P9—Pp3p7)
Ry(P,R) = Borq + Bors + 19

Thus7 as ﬁ(p17p27. o 7p9) and ﬁ(r17r27' Ty

rg) vary over all R? satisfying

po(p1p9 — psp7)(det P) # 0, each Rk(ﬁ, ﬁ) varies over all R, k = 1,3,4,5,6,9.

Now let C'4 be the collection of all automorphisms A of g such that relative to

the basis B, A has matrix

Dspo — pePs  —(D2po — psps)  Pepe —Dsps | Ri Ry 0O
—(p4p9 - p6p7) P1P9 — P3pP7 —(p1p6 - p3p4) 0 Rs O
paps — pspr —(pips —pap7)  paps —papa | Rz Rg Ry
[A]B =
0 0 b1 P4 D7
0 0 b2 Ps Ds
0 0 P3 DPe D9

Vpi, Ry, € R satistying po(p1pg — psp7) # 0, i =

172’...7

9,k=1,3,4,5,6,9. Then

we verify that different elements of C's lie on different cosets. If this is done, that

means Cy is an almost global coordinate patch for Adg\Aut(g).

For every distinct ¢, ¢’ € Cy, we know ¢ € AdgA and ¢ € Adg A’ for some

A, A € Aut(g). Let
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R Ry 0 R, R, 0
Q3x3 0 Ry O Q33 0 R, O
clg = and [c]z =
Rs Rg Ry Ry Ry Ry
O3x3 Psy3 03x3 Py 3

like the above matrix in Cy.

Then AdgA is the set of all Ad,A such that

Rl(ﬁ7§7§> R4<]371Eéa ) 53

Q s R ]3, ﬁ, S -
Ad, A, = ' ol ) ’ ,v5 e R®.

Ry(P,R,S) Rs(P,R,S) Ry(P,R,S)

And it’s similar for AdgA’. Since ¢ # ¢/, it requires at least one p; # p. or
R;j # R If p; # pj for some i € {1,2,---,9}, then AdgA # AdgA’. Suppose
pi = p} for all i, i.e., P = P.If R; # R, for some j € {1,3,4,5,6,9}. For

=,

example, let Ry # R'. This means Rl(ﬁ, R, 6) #* Rﬁ(ﬁ’, R, 0), then

-,

Ri(P,R,0) # R,(P,R,0). By the formula of Ry(P, R, S), we get

PR, 5) = B R, (j)— L2po=pap (i} P3(p2po —p3ps)
Ri(P,R,S) = Ri(P,R,0) pipe—pap ST poS3 T+ bbb Dbl g,
4 R(P,R,0) 2o Psbs,  Psg p3(p2po _p3p8)52

P1P9 — P3pP7 P9 P9 (Plpg - p3p7)

R\(P,RS)

)

Wy

Ry(P, R,

So Ri(P,R,S) #+ R,(P,R,S), and hence AdgA # AdgA’. Similarly for other
cases R; # R;-, 7 =3,4,5,6,9, we obtain the same result. Therefore different
elements of C'4 lie on different cosets. One concludes C'4 is an almost global

coordinate patch for Adg\Aut(g).
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Lemma 5.4. The assumption is the same as Lemma 5.3. With respect to the

coordinate patch Cy, we claim that

[po(p1po—p3p7)|

(et P8 )|dp1dp2 -+~ dpgdrydrsdrdrsdredrg

is a left Haar measure and

—|P9(i’é§§;§7gp7)| dpldpg tee dpngldngT4dT5dT6dT9

is a right Haar measure on Adg\Aut(g).

Proof. Given Ay € Cy, for each A € Cy, let A" = Ay A. But A" may not be in the
patch Cy4, we would like to find the corresponding A € Adg.A’ such that A is in
C 4. Then we can calculate the determinant of the Jacobian of the map A — A
at point A in order to figure out a left Haar measure on Adg\Aut(g).

Since Ag, A € Cy, let

cp ¢4 O

B3y 0 ¢ O

Aol = =: and
C3 Cg Cg
i 03><3 (aij)gxg |
r T4 0
Q3x3 0 r 0
(Al = = where matrices B and Q
r3 Te To O3x3 | Psx3
O3x3 (Pij) 33

are determined by A and P respectively. Then

B

C Q‘R BQ‘BR"‘CP

[A/]B: =
O‘A O‘P 0 ‘ AP

and hence from previous lemma we know the unique A € Adg.A’ such that A is

in C'y which its matrix is
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R(P,R) Ry(P,F) 0

i 0 R(P.R) 0

[ ]B Ry(P'.R) R¢(P',R) Ry(P, R
O Pis

So we need to ﬁg-ure out matrices P’ and R’, then we will know each Ri(P, R,

1=1,3,4,5,6,9. For the matrices

Pl
= AP
ay a4 ar P1 Pa Pr
= ag a5 ag P2 D5 DPs
az ag Qg P3s DPe P9

a1P1 + a4p2 + arps  a1Ps + aqPs + azpe  a1P7 + a4Ps + APy

= azp1 + aspe + agps  A2Py4 + asps + agPs  AsP7 + asps + agpg

| asp1 +agp2 + agps  azps + AePs + GgPs  A3Pr + AgPs + AgPo

by by by ri rg 0 c1 ¢ 0 D1 Pa D7
- by b5 bg 0 7 O |+] 0 ¢ O P2 Ps P8

bz bs bg rs Te Tog C3 Cg Cg P3 Pe DP9
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where

Ty =biry +brrs + cip1 + capa,

ry = byry + bgrs + cspa,

13 = b3y + bors + c3p1 + cepa + cops,

Ty = biry 4+ byrs 4 brrg + c1ps + caps,

rl = bory + bsrs + bsre + 55,

16 = bsra + bers + bors + Capa + cePs + Cope,
r7 = brrg + c1p7 + caps,

g = bgrg + C5ps,

Ty = borg + c3p7 + CoPs + Copo-

Let &' := plpy — piph. By formulas in previous lemma we get each Ri(ﬁ' R ):

Ri(P, R

/! VAN / / 1! VAN,
o PoPo—PaPy s Py g Pa(Phpo—papg) s
— 7’1 + S 7’2 plg 707 péal TS

= (byry + byrs + c1p1 + capa) + M(bﬂl + bsrs + c5p2)

——/3(577“9 + c1pr + cups) — %(bm + cs5ps)
= (by + by PRPTATR Yy y (b 4 b PAPO PP

—(b?i—%’ + bg P—é(péﬁé;pgpg) )7 + rational( P),
9 9
Ry(P',R)

’ - -
_ plps p2p7 / pl / pl(Png_pgpg) /
= Sy + Ty + Pl + -y —

_ p’lps p2p7 (

bory + bgrs + cspa) + (bsry + bors + c3p1 + cepa + Cop3)
+Z—é(b77“9 + c1p7r + cups) + ’%(bm + ¢5ps)
= (D PIBAPRPT 4 by 4 (D PAPEPEPE 4 )i

+(br 2 + b LRy vational (P),



Ry(P. R

__ P5Po—DEPg Pe. s P3(PEPo—DPEPE) 1
= ST r —l—r4 péT7 B T

= M(bﬂl + bgrs + c5p2) + (biry + byrs + brrg + 1Py + Caps)
—%(577”9 + c1pr + caps) — &%&J(bﬂg + ¢5ps)

p/p/ _p/p/ p/p/ _p/ p/
= (bg%ﬁ’l + (bg%)rg + b17’4 -+ b47’5 + b77’6

—(675—5 + bg%)m + rational (P),

Rs(P', R')

/ /ol ’ o7
_ _p4p9 P6P7 P1Pg—P3P4 ./
= -5 rh+ 1k — =y T3

pﬁ@u—‘lp FOEL (Dyry + bgrrs + csp2) 4 (bara + bsrs 4 srg + ¢5ps)

_ p’lpa p3p4 (

bgrg + C5ps)
= (_bQI%)Tl + (_b8%)7‘3 + bars + U575 + bsT

—f—(—bg%)ﬁ) + rational(P),

D! D

Rs(P', R')
PP —P5D" r! Py 1 | PIPEPo—DPiD4DR
— 4178 57 +7a6+ 4717_|_ 15849 3487n8

5 oo
= M(bﬂ“l + bgrs + c5p2) + (bsrs + bers + bors + c3pa + Cops + Cops)
+%(b77“9 + c1p7r + cups) + %(bsw + c5ps)
= (bQIM)Tl + (bgw)ﬁ; + b37’4 + b6T5 + bgTG

p/ p/ p/ p/ _p/ p/ p/ . —
+(b7p—j; + bgHLate Taluts R £)rg + rational(P),

Ro(P, R
=y + Bty
p—7(b77“9 + c1p7 + caps) + 2 (b87”9 + cs5pg) + (borg + c3pr + cps + copy)
(b

EF + bgJl + by)re + ratlonal(P)
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Thus we obtain all Ri(ﬁ’ R ), and hence we get unique A € Adg A’ such that A

is in the patch C4. Now let’s calculate both det [gp;} and det [%] .

Pilox9 "7 J6x6
ap;,
det [@] 9x9 _

ap a4 az 0 0 0 0 0 O

as as; ag 0 0 O O 0O O

ag ag ag 0 0 O O O O

0 0 0 a; aq ay 0 0 0

= det 0 0 0 as a5 as 0 0 0

det [%]
9rj | 6x6

1ol ol o) 1ol ol o)
by + bgp—2p9 P3Py br + bgp—2p9 PPs 0 0 0 *
) §
Il o ol Il o o)
bg p—1p85,p2p7 —l— bg bsp—1p8§,p2p7 —|— bg 0 0 0 *
PEP—PG DS D5 PG —P6 DS
d b2 595,68 bS 595/68 bl b4 b7 *
= det PYPo—DEP" PyPy—PsDY
_b2 95/ 67 _bS 95/ 6 b2 b5 b8 *
VY VY
b2p4p86,p5p7 bgp4p86,p5p7 1)3 bG bg *
- D&
0 0 0 0 0 b4 bg=2+ b
L p9 pg -

by + by PoPy—P3Pg b + bg PhPy—P5D%
/ / 6/ 6/
= (b7p—,7 + b8p—§ + bg)(det ngg,) det

Pg P9 PP —PhPY PP —PHP%
bg + b= b + by =52

= pifg(b7p,7 + bspg + bypy) (det Bsy3)

'{(bl + bQP’zpé;p’spé)(bg + bsp’lpéé—,p’zpé) — (b + bQP’lp’s;p’gpé)(bg + bsp’lpéé—/p’zpé)}
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Since

brph + bspl + bopy

a9 Qs a1 Qg
= (a1p7 + aaps + azpg) — (aspr + asps + asp)
a3 dae a3 Qe
a1 Q4
+ (aspr + asps + agpy)
Gz Qs
ag as a1 Q4 ay Qg
= (a — a +az )p7
a3 Qg az dag az Qs
a9 as a1 Qg a1 Qaq
+(ay — as + ag )Ds
as Qg as Qg a9 Aas
a9 as a1 ag a; Qg
—|—<CL7 — asg -+ Qg )pg
az dae as Qe Gz Qs
a; a4 Qai ay Qa4 Qa4 ay a4 ar

=lay as as P71t | ay as as |Ps+ | ay as ag |Po

a3 aeg as a3 aeg Qag az Gae¢ Qg
= (det Asx3)po,

it follows further that

det [BRZ']
9rj |66

b b b b ’ ! ] b b ;o ;
:I%((detA)pg)(detB){ b + v DiPa by | 2 8 oo phrs |
9 bs by by bs bs by
p’ p/ p/ p/
= (det A)(det A2 { L (as(det A) | T | —agdet A)| T 7T | -
Py P 2328
Py D
ag(det A)| 7 )}
2
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/

/ /
by Dg Y41
1
= (det A)* p—éé—(—a4 +as
/ / /
P3s Dy D3
/ /
Py a4 Py
_ 4p9 1 ’ /
= (det A) , 5 det p2 as pS
/ /
i P3 G DPg ]
a; a4 ar b1
po 1
(detA) oo det as as ag Do
asz ag Gy b3
(det A)Bpg p1p9 p3p7
pg p1p9 p3p7
_ (det P')® py pipg—papr
(det P)* py p1py =Py
Hence
det O(p.ph, - .pgy,R1,R3,R4,R5,Re,Ro)
O(P1,02, * 1P9,T'1,73,74,75,7'6,T9)
— det [ } det [6 ]
9pj | g9 "i 16x6
_ (det P')3 (det P')® pg pipg—papr
(det P)® (det P)° pg pipp—phry
(det P")8
__ po(Pypy—phPh)
- (det P)8
Py (P1P9—P3P7)
Therefore
\pg(plpg —p3p7)|dp dp
1 2"
(det P)8

is a left Haar measure on Adg\Aut(g).

Pr pll P
— ag )

P Py Dy

0 pr

1 ps

0 po

: dpg d?”l d?"g d?”4 d?”5 d?”ﬁ d?”g

Next step we want to find a right Haar measure.

Given Ay € Cy, for each A € Cy, let A’

= AA,. But A’ may not be in the patch

C4. We want to find the corresponding Ae Adg A’ such that Ais in Cy4. Let the

matrices of A and Ay relative to the basis B are the same as before. Then
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B‘C’ QB‘QCJrRA

0 ‘ A 0 ‘ PA

From previous lemma we know A has matrix
Ri(P,R') Ry(P,R) 0
@33 0 Rs(P', R 0

Ry(P',R') Res(P',R') Ry(P,R)

/
O3x3 Psy s

So we need to know matrices P’ and R’, then each Ri(ﬁ’ , R') follows by formula.

Pl
= PA
b1 Psa Pr a; a4 ar
= | P2 DPs Ds az as dag
P3s DPe Po a3 as Qg

a1p1 + aopy + azpr  a4p1 + asps + agpr  arpr + agps + agpr

= | a1p2 + agps + azps  GsP2 + asPs + agPs  ArP2 + agps + agpPs

| a1ps3 + aope + aspyg  aqps + asps + agpg a7p3 + asgpe + aAgPo
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R/
=QC+RA

G Q4 Q7 cg ¢ 0 rn 1y O a, a4 ar
= | @ ¢ @ 0 ¢ O+ 0 5 O as as as

q3 46 49 C3 C¢ Cg r3s Tg T9 as Qg Qg

where

T =airm + 9Ty + C1q1 + C3qr

Th = asrs + c1qo + C3qs

T3 = a173 + Az + asry + c1q3 + C3qo

Ty = ayr1 4 asry + caqu + c5qs + Codr

5 = asTs + Caq2 + C5q5 + Cos

76 = 4T3 + a576 + a9 + Caqs + C506 + C6Qy
7 = Q771 + agry + Coqy

Ty = agTs + Cogs

Ty = arT3 + agTe + AgTg + Cyqo.

Let &' := plpy — piph. By formula in previous lemma, each R;(P',R') is the

following;:
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Ri(P. R

VW) / NN
0 PoP9—P3Pg ../ _ P30 p3(p2p9—p3p8)
=7]+ =52y — 21y oy

/
o’ Dy ry

= (ayr1 + agry + c1q1 + c3qr) + %(aﬂ% + c1q2 + €33)

/ / /! ! ol
_b3 P3(Popy —p3p5)
p3 (a7ry 4 agry + coqr) — i (agrs + cogs)
P P PHPo—PsPR P5(PoPo—P5PR) ; 3]
= (a1 — a7p—é)7“1 + (az — agp—é)m + (a2 S )rs 4 rational(P),

D! D!
R3(P', i)
PR —PLD" P! P} (PG5 —php
— 186 27r +T3+ ll/r7+ 1(2?5/38)T8

P1Pg—DP4PY (

5 agrs + c1qa + c3qs) + (a1 + agrg + azrg + c1qs + c3qo)

P} P (phpy —PhDs
+p—i(a7r1 + agry + coqr) + 21 (PoPy—psps) 2p25, 575 (agrs + coqs)

— (P Py P1Ps—P5P7 Pl (Pypy—p3ps)
= (a7p—,9)7"1 + airs + (agp—é)7"4 + ((12 5 + ag Py )7"5
+asrg + asrg + rational(P),
—», —»,
Ry (P, R)
__ P5Py—PGPs Pt Ph(PEPo—PEps) s
- 5 T2 + 7’4 7 T7 — 757 TS

_ P5Po—PGPy (

asrs + c1qa + ¢3qs) + (aar1 + asra + caqq + c5q4 + coqr)

5/
P P53 (P5Po—P6Ps)
—p(azry +asra + coqr) — SRR (agrs + Cogs)
PLPy—P4Pk P3(P5Py—PsPs) . 5
= (as — a7t o )rl + (as — ag ) + (ay==50= — ag i )rs + rational(P),
R5(P’, R’)
_ _ Pupy—pep7 g ! _ PiPg—D3p)
= — vl + rf — BEPPL
&5 2 5 5 8
Py Po—PsP% P pg—PaDl
— SRS (ag7s + C1G2 + €3G8) + (575 + CaGa + C5q5 + Cogs) — T2t (asrs + Cogs)
PPy — PGP PP —Psp; . )
= (—ay™25 5 + a5 — ag= 5= )rs + rational(P),

D! D!
R¢(P', R')
PYPR—PEDT 1 /Py | PiPEPo—D3PyPR
== 5 T2—|-7’6—|——f17’7—|— 1 Lo 4 Tg

__ PuPg—D5py (
- =

as”s + 1G2 + c3qs) + (aar3 + asre + agry + caqs + ¢5qs + c6qo)
P P1P5Py—P3P)Ps
+p—é(a7r1 + agry + coqr) + T(as% + coqs)
_ A P Pipk—pkpYy PLPEPy—P5PLDE
= (a’7p_§)rl + a4Ts + (Clgp—é)ﬂl + (ag—é, ) + ag—pé(s, )T5

+asrg + agrg + rational(_ﬁ),
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Ry(P', R
= ;;—Zré + z—:zré + 7
= f}—g(aﬂ“l + asrs + coqr) + f}—é(agm + coqs) + (arrs + asre + agre + coqo)
= (CL?%)Tl +arrs + (asi—g)m + (ag%)m + asrg + agrg + rational(P).
Thus we obtain all Ri(ﬁ’ R ), and hence we get A € Adg.A’ such that A is in the
patch C4. Now let’s calculate two determinants.

ap,,
det |:8pj ] 9x9

agz 0 0 az 0 O a3 O O
0O ag 0 0 a 0 O a3 O
0 0 agz 0 0 ay 0O 0 a3

agz 0 0 as 0 0O as O O

=det| 0 ay 0 0 a5 0 0 ag O

0 0 az 0 0 ag 0O 0 ag

ag 0 0 ay O 0 as 0 O

ag 0 0 a5 0 0 ag O O

= —det 0 agz 0 0 a5 0O 0O ag O

0O az 0 0 ag 0O 0 a9 O
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a, as az 0 0 0 0 0 O
as a5 ag 0 0 O 0O O O
a; ag ag 0 0 O O 0 O
0 0 0 a; Qag as 0 0 0
=det | 0 0 0 as a5 ag¢ 0 0 O
0 0 0 a7 ag Qg 0 0 0
0 0 0 0 0 0 ay as as
0 0 0 0 0 0 as as Qg
0 0 0 0 0 0 ay ag ag
= (det A)3
_ (det P")3
(det P)3
det [%]
"i 16x6
/
p
al—a7% O ag—agp—z k
/ /
a7p—,1 ay ag—r *
Py
P4 P
a4—a7p—$" 0 a5—a8p—? *
= det 9 .
0 0 0 —a, Pl
Pl Py
L 24 *
a7pé ay4 a8p/
iid i "
i CL?pé az as .y
_ ”
al—CL?p—é
Py
a7pé
p/p/ _p/p/ p/p/ _p/p/ ,
:(—02%+&5—a8165,34)det a4—a7%
9
Py
a7p,9
Py
B a7p§;
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[ Pl Pt
ay — a7—,3 ag — ag—?’ 0 0 0
Pg Pg
/ /
ag—artt as—ashr 0 0 0
PP —DgP" P} PG —P4D! / /
= (_&2 4 95/ P74 e — ag™ 66l 3 4)det a7z_/1 asz_} a1 ay as
9
Py Py
ap =+ ag =+ as as a
7p/9 8p/9 4 5 6
p/ p/
a7p_/7 agp—g ar ag Qg
pl pl _p/ p/ p/ p/ 7p/ p/
= (_QQ%M + a5 — agBEehs 4)(det A)
P A P Pg
.{(al — CL7p—é)(CL5 G,g—/) — (CL2 — agg)(azl a7p—é)}
/ / / / / /
Py D7 Py Py Py Dy
= (det A)F ( — az det + as det — ag det )
/ / / / / /
Ps D9 P3 Dy P3 Dg
1z P4
{(a1a5 — azay) — (a1as — GQCL?)p—Z + (asag — a5&7)p—z}
/ / /
P1 Py Dy ay a4 a7
_ 1
= (det A)m det as a5 dasg det as a5 ag
/ / / / / /
P3s DPs DPg P3s DPs Dy
P1 Pa Pr ay ag ar 1 0 0
det A d
o~ det det
po (P} ph—phoh) 0 1 0 az Qs dag 0O 1 0
P3s De Do asz ag Gy Ps DPe P9

— (det A)3Po(p1ro—psp7)
( ) Py (1P —P5P7)

(det P")3pg (p1po—p3p7)
(det P)3pg (p pg—p5p7)

Then

det 8(1),1 7p,27“' 7p,97R17R37R47R57R67R9)
O(P1,P2,7* 1P9ST1,73,T4,75,T6,79)

det |:6_p;i| det [%]
Ip; 9% 9 or; 6x6
_ (det P")3 (det P")3pg(p1po—p3p7)
(det P)3 (det P)>pg (p)py—phph)
_ (detP))S
_ py(p)py—rhph)
T __(detP)6
P9 (P1P9—P3PT)
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Therefore

Ipo(p1p9 — P3p7)|
(det P)S

dpldp2 tee dpgd’l"ld’l"gdﬁldTg)dTGdTg

is a right Haar measure measure on Adg\Aut(g).

Motivation. From the introductory example for g = F3 2, we know that 0 ® o is
an automorphism of g for all o in SO(3,R). We call it the
rotation-automorphism.

We now define dilation-automorphisms of g by

Ty goDg — g2Do

(Z,Y)— (12, 1Y)

Vr > 0. Then 7, indeed is an automorphism of g since

([Y:, Y;]) = [Y;,Y}] = Y, Y] [1,.Y;, 7,.Y;] for all pair (i, 7).

[f 13 f J

And define its dual 7;° by the inverse transpose, then
THZ5 YY) = (rZF, /1Y)

since (77(Z*, Y)W Z',Y') = (Z*,Y*)(r (2", Y")) = (Z*,Y*)(rZ',\/TY")

= (rZe, VY )(Z2,Y") V(ZY) € g2 © g1

Now let ly € g}, be fixed, for each [ € g}, there exist » > 0 and o € SO(3)
such that ro*(lglg,) = l|g, since any two non-zero vectors can be rotated and
dilated into one another. Thus we get an automorphism 7, o (¢ ® o) with

(150 (0 ®@0))ly =ro*(lolg,) + V70" (lo|g, ), and hence we have the following
relations of orbits O+ (6w0) 1 || Oro*(io]g,) = Olly, || Or- The purpose of next
lemma is to find an automorphism p¢ associated with o such that its dual p¢”
moves the orbit Orx(;g0), parallel to O; along the direction in gj related to o.

Then we call pf the translation-automorphism of g.

72



Lemma 5.5. For g = F3 5, give g a norm respecting the bracket. Let

B ={Z,7y, Z3,Y1,Ys, Y3} be an orthonormal basis for g built as in Construction
2, and let B* = {Z}, 23, Z3, Y5, Y5, Y5} be its dual basis in g*. Fix

lo=a1Zf + axZ5 + a3 Z5 + b1 Y + b Yy + b3Y5" € g3, and denote it by (@, b).
Choose a cross-section for SO(3)/Stabgos)(@). For each [ € gj;,,, let

l =277 + 2075 + 2325 + 1 YT + 42Y5 + y3Ys = (Z, ). We show there exists an
automorphism p¢ of g with o € ¥ such that p¢" | =1 + t(2, Y] + 22Y5 + 23Y5),

Vt € R, where ¢* rotate @ into the direction of 2. Moreover, let

i = (Y7 + a5V + a3Yy). For every (@, ) € g5 @ g},

07 (@, ) = (@ 5+ (0@, @)o" (ldla)).

Proof. For fixed ly = Z3 € @}/, let p; be the map

i 8 — 9
Zi }—>Zi7 i:17273a
Y} = Y}a j: 1727
Ys — Y3 —tZs
then p¢ is an automorphism of g, and its dual p¢ is
pog —g
Y Y i=1,2,3,
Zr e 75 j=1,2,

Zi v 234 1Y

We verify the dual §¢ as follows:
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(7 (YY) =Y (55 Y;) = YY), Vi=1,2,

K3 K3

-1

(o5 (V) (Ya) = Y (p§ Ya) = Y7 (Vs + tZs) = Y (V3)

1

(6 ((Z) = Y7 (5" 25) = Y2 (2)), 9 = 1,2.3

1

Sopf (Y Y Vi=1,23.

2

For + = 1,2, we have

(B (Z)(Yy) = Z: (55 Y;) = Z:(Y5), Vi = 1,2,

K K3

1

(P (Z)(Ys) = Z; (p Ys) = Z; (Ys + 1 Z3) = Z;(Y3),
(B (Z00Zy) = Z7 (B Zy) = Z3(2;),Vj = 1,2,3.

So p¢ 1 ZF — ZF, Vi=1,2.

(P (ZED(Y5) = Z3(p V) = Z5(Y) = (25 +15)(Y)), ¥j = 1,2,
(55 (Z3))(Ya) = Z5 (5 Ya) = Z5(Ys + t25) = t = (Z3 + tY5)(Y3),
(55 (Z)(Z)) = Z3(B5 " Zy) = Z5(25) = (Z5 + tY5)(Z;), Vi = 1,2,3,
So p¢" : Z3 —— Z3 + tYy. Thus, we get the dual pf as desired.

1 pPs PpPr
For each o € SO(3),let 0 = | p, ps ps |, define

b3 Pe P9

p; =(c®0c)opfo(c®a)™

Then we get

~0

prt 8 —8
Z; — Z;, Yi=1,2,3,
Yi Y1 —tpr(oZs)
Yo /Y5 — tpS(UZ?))

Y5 +—— Y3 —tpy(0Z3)
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since
pi(N1) = (e @ 0)pi (07 Y1) = (0 @ 0)p;(0"V1) = (0 ® )5 (p1Y1 + paYa + prYs) =
o(p1Y1 + paYo + prYs) — tpr(0Z3) = Y1 — tpr(0Z3),
and it’s similar for Y5 and Y3;. We also get the dual

p7 = (c@o)op oo @),

~g* * *

pl g —g

Yy — Y Vi=1,2,3,
Zy — Z7 +tpr(a7Y)
Zy — Zy +tps(a'Yy)

Z5 v+ Z5 +tpy(a*Yy)

since

(25 = (0@ o) 3 (07 20) = (0 @ 0) B (2 +paZs + piZ3) =
0" (D125 + paZs + prZ3) + tpr(07Y5) = Z7 + tpe(07Y5)

and it’s similar for ZJ and Z3.

-,

Since ly = (@,b) € @340, @ # 0. Then there exists unique o, € ¥ such that

oi(knd) = Z3, L., @0y Z; = a.

So we have

* ,,,0—_1 _ _ ~e
”C_’:HO-(;1 Y:’S* - al}/I* + CL2Y'2* + a3Y§k7 and Pt = (Ua ! ® Oq4 1)pt (011 & Ua)'

Hence

—1*

STH
I

i3 (0, @0, )Py (00 ®0a)(|dllo, " Z3)
= la|(o;' @ 0" )5y Z3
= |dll(c, " Z5 + to, YY)

= a+t(a Y] + aYy + asYy)
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For each | = (Z,Y) € @}juus Z = llg, # 0. Then there exists unique (r,0) € R™ x X
such that 2= ro*da.

So we have

202+ 2025 + 2325 = ro* (a1 Z] + ap Zs + a3 Z3)

and

2V + Y5 + Y =rof(aY] + arYs + asYy).

Now we define

Then

—

= rp] (0*@) + p] (§)

—1*

= r(e®o)p" (c®o) " (0"a) +y
= ric® U)*ﬁf‘:l* (@ + 4
= r(0®0)"(d+taYy + Yy +asVy)) +§
= (ro*a+g) +tro*(aYy + apYy +asYy)
= [+ t(zY) + 25 + zY5)
Since

—1

p; = (c®@0)p* (c@0o)”!
= (0®o0)(o, ' ®0," )P0, ®0a)(c@0)!

—1)—1

= (00! ® o0y ") (00, ® ooy

b1 ps Pr
let oo,' = | py ps ps | then we get pf (Z7) = Z7 + tpr(o0o, )Yy,

P3 Pe DP9
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p7(Z3) = Z3 + tps(00,)Y5, and pf (Z5) = Z5 + tpy(00, )Yy
Hence for every (&, 3) € g} &® g}, let
&= a1 Zf + awZs + azZ;, and § = B[ + BoYs + BaY5

Then
p? (@, 8) = anpf (Z7) + aopf (Z3) + aspf (Z3) + pf (B)
= 177 + asZy + a3 Z; + t(pray + psan + poas) (oo, ) YS + 6]

= (a, ,§+ t(prou + psas + pociz) (oo, ') Y5

—_

= (@50 25, @) () + Y+ ay))

- @f +t<a*<ﬁa>,&>a*ﬁ>

—

2 t x2 N k(|| 2|2
= (Oé,ﬁJrW(U a, d)o”(||al|w))

This proves the lemma.

Lemma 5.6. Fix Iy = a1 2] + a2 Z5 + a3 Z3; + b1 Y| + b Y5 + bsYs € ghy,., and

denote it by (@, b). Let ¥ be a cross-section of SO(3)/Stabgos)(a@). Show
X :={pforo(c®0)| (t,r,0) e R x R* x T}

is a cross-section of the double coset space Adg\Aut(g)/Stab*(ly).

-

Proof. Since fixed ly = (@, b) € g};.., there is some coefficient a; # 0, 1 <7 < 3.
Without loss of generality we let az # 0. Then claim

t, = g2 © R(a1 Y1 + axYs + asYs).

Since v, = {Z +Y| b([Z+Y,g]) =0}, let Y = 31 Y1 + y2Ys + y3Y3, then it follows
lo([y1Yr + y2Yo +43Y3,Y;]) =0, Vi = 1,2,3. If i = 1, then —azys + agys = 0; if

1 = 2, then azy; — a1yz = 0; if ¢ = 3, then —asy; + a1y2 = 0. Since az # 0, we get

_ a1 __ a2
Y= .93 and y, = a3 Y31 SO
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YY1+ Yo + y3Ys = CysYr + 2ysYo +ysYs = L(ar1Ys + axY2 + a3Y;). Hence

Uy = {Z+ Z(aY1+aYo+a3Y3)| Z € g2, y3 € R} = g2 @ R(a1Y1 + a2Y2 + a3Y3),
and we see t;, is an ideal in g. Then by Theorem 3.2.3. in [1], we know

Oy, = lp + v where the annihilator of v,

tfo =17 = Sp{azY" — a1Y5, a3Ys — apYy'}, is a two-dimensional plane in g}.
Hence we can choose a unit vector « = Ha%”(alYl* + aY5 + azYy) € g}
perpendicular to this plane t3. Before we go further, let’s verify one fact.

For each A € Aut(g) and [ € g*, claim v, = A*(t}).

Proof of claim:

vy = {feg’] flrar) =0}

= {feg'l f(Ay) =0}

= {f=Fo AT f(u) =0}

= {f=AJ| f(w) =0}

= A{f| f(w) =0}

= At
For each o € 3, since (0 ® o) € Aut(g), we get ot = (0 @ o)tz =t
Since fixed Iy = (a,b) € Girans @ = lo|g, 7 0. For each A € Aut(g), we know
A*ly € @ye> 50 (A%lo)[g, # 0. Then there exists unique (r,0) € RT x 3 such
that ro*d = (A*lp)|g,- Thus we get unique automorphism 7, o (¢ ® o) with

750 ® 0)*ly = 7 (0@ + 0*b) = ro*d@ + /To*b, and its orbit

Ors(wooyty = (10" G+ Vro™D) + ¢} oy oo = 10" G+ Vro'b+ thg

Let 2125 + 2025 + 2325 = 2= o*d, and y1 Y| + Y5 +y3Ys = ¢ = o*b. Then we
have 21 Y + 20Y5 + 2z3Y5" = o*(]|d]|@). Since o* rotate @ into the direction of Z, by

previous lemma we know there exists pf € Aut(g) such that
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¢ (1r (o @0) ) = pf (12 + /1) = (rZ+ V1Y) + trza Yy +raYs +raYs) =
ro*d 4+ /ro*b + t(ro*(||@||@)), and its orbit is parallel to the orbit of 7*(c ® o)*lq,

in other words,

Opg*T:(O'@U)*lO - TO'*C_i + \/Fo-*b + t<ra*(||a|‘ﬁ>> + tlJ)_?*T;f(O'@O')*ZO
= ro*@+ ro'b + t(ro*(|@|a)) + thy

ra*d + ro*h + th

= OT,’f(o‘@U)*lo
Thus, for each t € R we have the following relations of orbits

O, || O *(o®o)*lo — @ *p || OTU*E = O(A* || O.A*lo

0" T (0®0)* ro*a+\/ro l0)lgs

We want to show that there exists unique ¢ € R such that (’) = O g+1q-

T a®0'

Since @ = IIaH (a1Yy" 4 a2Y5 4 a3Y5) ¢ v = vz in g7, for each t € R we have

(tr)|@||@ + /70 + t2) || v2, and hence o* (tr||@||@ + /7b + t&) || 0¥tk in gi. So
5 = Of{o(trlali+ vib+ch)] € R)
= U {t(ro*(||@||@) + Vro*b+ o*ts| t € R}

= U{/ro®b + t(ro*(|@||a)) + tky

Hence there exists unique t € R such that

(A*lo)la; € (Vo +t(ro*(|@@)) + t.z)- Then

Aly = (A"lp)lg, + (Alo)lg,
= ro'a+ (A%l)lg
€ roti+ ro'b+ t(ro*(||@| @) + iy
- 0

7 Tt (0®0)*lo

Hence we get O g+, = O as desired.

7" T (0®0) 1o
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Thus we know for each A € Aut(g) there exists unique (¢,r,0) € R x RT x X
such that O a1, = O(per, (000)) 1o And by Theorem 2.1. we know for each

O, € Opar there exists A € Aut(g) such that O = O 4+,. Now define

T :X* — Oppaz by T(2*) = Oy, Yo € X. Then T is bijective. Since there is
one-to-one correspondence between Oy, and D := Adg\Aut™(g)/Stab(ly), it

follows that there exists uniquely one x* € X* from each coset d € D. It

concludes that X* is a cross-section of D, in other words, X is a cross-section of

Adg\Aut(g)/Stab* (o).

Motivation. Let X = {pf o7, 0 (c ® 0)| V(¢,r,0) € R x RT x ¥}, we have
shown that X is a cross-section of Adg\Aut(g)/Stab*(ly). But X is not a group,
i.e., it is not closed under composition. We show next to which element of X the

composition of two elements of X corresponds.

Lemma 5.7. Fix ly € g}y, Let lo = a1 27 + axZ5 + asZ; + 01" 4 boY5 + b3Yy',

—

and denote it by (a,b) € g5 @ g7. For each py’7,, (00 ® 00), p{7.(0c @ 0) € X, we
have the equality
Adg(pi) Ty (00 @ 00)p] T(0 @ 0)) "l = Adg(p7Y

T
2., ' ror
o +tocos2e "0

(000 ® 000))" o

where 1) is the angle between vectors @ and o*d, i.e., ¥ is the angle of rotation for

*

o .

-,

Proof. For fixed Iy = (@, b), we showed already in the beginning of Lemmab.6, its
radical is t;, = g2 ® R(a1Y1 + a2Y2 + a3Y3). So dim(v;,) = 4, and hence
dim(t;;) = 2. Then t; = Spang{asYy" — a1Y5', asYy" — ayY5'} since it contains the

two listed independent vectors.
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Now we choose a unit vector @ € g7 perpendicular to the plane ti,

ﬂ: || ||(G1Y —|—a2Y —f-CLgY)

For each (&, 3) € g5 @ g7, let’s recall that pf" (@, ) = (@, § +

7 (o™ d, @)o* (|lal| @)
and Ad% (@, §) = (@, §) + tL. Then for each P T (00 ® 00), Ufn(o ® o) € X, the
orbit of the dual of their composition acting on [ is
AdG (07 (00 © 00)p T (0 ® 0))7(d, B)
= Adg(p7 (00 ® 00)p]7,)" (07, 07D)
= AL (00 @ 00)6f) (10", D)

= Adg(pf 1 (00 ® 00))" (roa, Vroth +

t * = * o\ k(|| 2]

——(o*d, ro*d)o"(||d|w))
a|
= AdG(p2 Ty (00 ® 00))* (ro*d, /ro*b + tro*(||dl|@))
= Adg(pf1y,)* (rogo™a, \/Faa‘a*g+ trogo™(||@l|))
= Adgpfog (rorogo™d, \/rgraéa*l;jt t\/rorogo’™(||@||w))

a5 x %= * %7 t * k(|| =]~
= Adgpl (rorogo™d, \/rorogo*b + —=rorogo”(||a||w))

V1o

- t
= Adg(roroyo*d, \/rorogo™b + rorogo”(||@l|@) + W(aé&, rorogo ayogs(||d||w))

t
VTo
- t
— Ad* * ko *o*b * k(|| 2|7
G(rorogo™d, \/rorogo +—\/%r07"000 (||d]|@) + E ||2

Let ¢ be the angle between vectors @ and o*d@, then it follows

=alor(d, ot @)og([[al| @)

Adg (P07 (00 ® 00)p7 T (0 ® 0))*(@, b)
t o o
= Ady(rorogo*d, \/roro, *b—i— —rorogo”(]|d@||@) + to(cosy)rorog(||d]|w))

Vo

t
= (roroo’d, /rorogo™h+ \/_7"07“000 “(lall) + to(cosy)rorog (1|@ll@)) + troresoa
70

Since unit vector @ = 2 L (1Y + apYy + azYy) perpendicular to two-dimensional

plane tl =t7 in g; = R?, it implies that the unit vector ofo*u perpendicular to

: : * ko | _ el
two-dimensional plane ojo*ts = vk “ovd = Ungrazorq 11 @1 Then the vector
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oj(||d]|@) € g} can be written as the addition (o(||d||«), ofo*w)ogo*i + v for

some vector ¥ in the plane t And hence it follows that

.
TT‘UO’a

A (p70 7 (00 ® Uo)p?n(a ® 0))*(@,b)

= (rorogo’a, \/roroyo b+ —rorogo”(||d]| @)
\/_0

1
rorogo*ad

+to(cost)ror({og(||d]|@), ogo ™ d)oso™d + ) + ¢

= (roroto*d, \/roroio*b +

t | =
——rorogo”(||d||@

N o"(|lal|@)

+to(cosy)ror||a@||(d, o @) oio* i + to(cosy)rorv) + t-

rorojo*d

t — K — * sk || =
= (roroio*a@,\/roroio*b + \/_7’07”000 *(||@|| @) + to(cosyp)ror{u, o*w)oso™(||@l|w))
To

1
rorogo*d

= (roroyo*d,\/rorogo”b +

+t

t kX _k || = * * =] =
Ntk (llall@) + to(cosy)*rorage™ (1all) + trgrasora
The last equality holds because 1 is the angle between @ and o*d, meanwhile, it

is the angle between u and o*u. Furthermore, it follows

-

Adg (i Tro (00 @ 00)p{ 72(0 @ 0))"(d, )

S > t il
= (rorogo*d, \/roroso’b + (_r + tocos® ) rorago*(||d@l| i) + tfomaa*a
0

- * %7 l x k(|| =27
= Adg(rorojo*d, \/rorogo™b + (\/_7’_ + tocos®)rorago*(||d@l|i))
0
t 2
o — + tocos Y
= Adg(TOTOSU*a,\/TDTJSU*b+\NH_,—HQ

= Adgp (j;)i+t Coszw(TOT’O'OO' a, \/roroyo” )

== AdG(poji-i-t COS2TZ) ’f‘o’!’) (O-SO'*C_]: O‘S *b)

(030, rorogo*d)ogo” ()

= Adi(p ‘ijiﬂows% Tror (000 @ 000))* (@, b)

Therefore we get the desired equality

-, —,

Adg (p7) Ty (00 @ 00)p T(0 @ 0))*(d, b) = AdG(piOtiH cosT Tror (000 @ 000))*(d, )

for every pi°7,, (00 ® 0¢), p{T(0c ® o) € X.
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Verification of Relative Invariance for F;,

Let g = F3.2, choose bases B for g and B* for g* just like in Construction 2.
Define a linear map A : g5 — g} by AZ =Y i =1,2, 3. From Example 4.3.14.
in [1], we know that Q 1= {fw +tAw| 7 >0, t € R, w € g} with ||w|| = 1} gives
a cross-section for Oyy,,. For each 7w +tAw € g},,,, there exists A € Aut(g) such
that A*Z; = fw + tAw. Since X* = {(p? o1, 0 (0 ® 0))*| (t,r,0) € R x RT x %}
gives a cross-section for Adz\Aut*(g)/Stab(Z]), there exists unique

(t,r,0) € R x R* x Xy such that O+, (see))rz; = Oa-z;. So we have

O(p7rr(000)) 23 = Ofpyiaws and hence there exists X € g such that

fw+tAw = Adl,x (077 (0 ® 0))*Z;
- Adep(X)(pgTr)*<g*Z§)
= Ad* (X)p;’*(ra*Z;)

exp

— Ad:xp(X) (ra*Z; +tra*yy)
= (ro*Z; +tro*Yy) + (adx (ro*Z; + tro*Yy)

= ro"Z; +tro’Y; + (ady o (0 ® 0)*)(rZ3 + trYy)

= ro*Z;+tra’¥y + ((c®o)" o ad?a@o’)*lX)<TZ§ +trYs)
= 10" Z; +tro’Y; + (0 ® 0)*ad(, g0 -1x(1Z3)

= 10" Z; +tro’Yy +r(o® o) ad,g,)-1x23
= 10" Z; +tro’Y5 +1(0 ® o) (1Y + e2Y5)

= ro"Z; +tro’Ys +reo’Y) + reotYy

for some constants ¢y, c; € R. The seventh equality holds since we proved in

Theorem 2.1 the identity AAd, = Ad 4. A, Vo € G, A € Aut(g) (and Aut(G)), it

follows Aadx = ad4x.A. By replacing A by AL, we get Aad41x = adx A,
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and hence A*ad’-1y = ady.A*. Thus we have

Fw + tAw = ro* Z; + tro*Yy + reio* Y + reeo*Yy' . it contains two conditions
Fw =1ro*Z; € g3 and tAw = tro*Yy + re;0*Y) + reeo* Yy € gi. The first
condition follows w = 0*Z; and 7 = r. Since w =0*Z; and A: Z/ — V" is
linear, we get Aw = 0*Y3". So the second condition follows

to*Yy = tro*Yy + rejo*Yy + reyotYy. Since {0*Y[, oYy, 0*Yy )} are linear
independent, we get { = ¢tr and ¢; = ¢5 = 0. Hence there is a one-to-one
correspondence between cross-section 2 of Oy, and X* of

Ad\Aut*(g)/Stab(Z3) with relations 7 = r and t = tr.

From Example 4.3.14. in [1], we know 7 singdtdided is the Plancherel measure
on Ojq, viewed on cross-section €. Since g5 is algebraically isomorphic to R3,
give the rotation group on gj the measure do which is area on the unit sphere.
Thus do = sinpdedf. This is indeed invariant under all rotations centered at the

origin. Since t = tr, it follows dt = rdt, and hence

P singdtdidpdd = r*sinpdtdrdedd
= ridtdr(sinpdpdd)

= rdtdrdo

Then
du(t,r, o) := rdtdrdo
is the Plancherel measure on Adg\Aut*(g)/Stab(Z3) viewed on cross-section X*.

Next we verify the relative invariance of p.

For every p77,, (00 ® 09), p{7.(0 ® o) € X, we know already

Adg(pty oo (00 @ 00)pf 10 @ 0))* Z3 = Adg(p7 |, o2y Tror(000 ® 000))" Zs
m+tocos [
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It follows that

t
dlLL((tOv To, JO)(t’ T, 0)) = dﬂ((_ + t00082¢7 ToT, 000))

V7o

agt
= (ror)"d( N

1
= r§r4(ﬁdt)(rodr)d0

= r(? (ridtdrdo)

+ tocos*)d(ror)d(ooo)

= | det(p{’ 7, (00 ® 00))"|du(t, 7, 0)

Note that the equality d(ogo) = do holds because do = singdpdl is

rotation-invariant. Thus we know

(Pl Tro (00 @ 00))" E) = [ det(pf 7y (90 © 00))" | 1(E)

for every measurable subset E. Therefore Plancherel measure u = rdtdrdo on

the double coset space Adg\Aut*(g)/Stab(Z3) is relatively invariant for g = Fj.
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6. General Properties of Free 2-step
Nilpotent Lie Algebras on n Generators

For any arbitrary nilpotent Lie algebra g, let g = [g, g], and g©® = [g®), g]. If

g® = {0}, dimg® = "("2_1), and dimg = n + @, then g is algebraically
isomorphic to F, o, free nilpotent Lie algebra of two steps on n generators. The
reason is the following:

Since dim(g/g®) = dim g — dim g® = n, pick a basis {Y;,Ys,---,Y,} for g/g@.
Choose Y; € Y;, Vi=1,--- ,n. Let

By :={Zy| k=1,2,-- , "= U} = {[V;,V}]| 1 <i<j <n}. Then B, is a basis of

]

g®@ since they span a space which is given as @ dimension. And hence

By U{Y1,Ys, -+ ,Y,} is a basis for g. Therefore g is isomorphic to F,, o.

The above argument suggests all generators play the same role or they look
similar with each other in some sense. So we expect their brackets look similar
too. Let’s explain this explicitly.

Let g = F. 2, and go = [g, g]. Give any arbitrary norm on g, let g; be the
orthogonal complement of g,. Pick a set of n orthonormal generators
{Yjli=1,--- ,n} in g;. Then a question is raised: does the bracket preserve the
norm and the orthogonality? In fact, it is not necessary. But we may adjust the
norm in order to get a positive answer. The following lemma gives the answer in
the affirmative. First, let’s give a definition.

A norm is said to respect the Lie bracket if given any orthogonal map oy of g,

there exists an orthogonal map o5 of go such that oy ® oy defines an

automorphism of g.

86



Lemma 6.1. Let g = F,,5 (n > 1), there exist norms on g respecting the bracket.
In other words, for any set of n orthonormal generators in the orthogonal
complement of [g, g, all nontrivial brackets of any two generators are

orthonormal.

Proof. Give any arbitrary norm ||-||; to g. Let go = [g, g], and let g; be the
orthogonal complement of go. Pick a set {Y7,Y3,---,Y,,} of orthonormal
generators in gy, and let {Zy, Zs, -+, Z,,} = {[Y:, Y]] 1 <i < j < n} where
m= @ Then g1 = Spr{Y1, -, Yn} and g2 = Spr{Z1," - , Zm}. Keep the
given norm ||-||; in g1, and use Euclidean norm ||-||z in go respecting
{Z1,---,Zy}. This means the corresponding inner product ( , ) defined by
Euclidean norm ||-||g makes (Z;, Z;)g = d;5, Vi,j = 1,2,--- ,n. Then define the
map |- : ¢ — R by

1Y + 20 = JIVIE+ 1215
VY € g, and Z € go. We claim that ||| is a norm on g.

(1) For every W € g =g1 ® go, let W =Y + Z, then ||cW| = ||c(Y + Z)|| =

leY +cZ| = VY I + lleZ]% = lelllY + Z|| = |e[[|[W], Ve € R.

Q) W+W | = [V+2)+ Y +2)|
= Y +Y)+(Z+2)
= W+YII+1Z2+ 2%
< (VI + 1Y)+ (U Zlle + 121 2)?

= VIR + Y15+ 121E + 12'0% + 20V 1Yl + 121111 2] )

< VIR + YR + 1215 + 1210 + 23/ 1Y 13+ 12150/ 1Y1% + 1271

= (JIVIE+1ZI% + 1Y% + 11213

= (Wl + W12,

87



so we get [[W+ W[ < [[W][ + [[W’[|, vW, W' € g.

B) Wl[=0eVIVI[i+IZlz=0Y =0=2< W =0,

VW =Y+Zecg=g P go.

By (1), (2), and (3) we know || - || : g — R is a norm on g. Hence
{Yi,--+,Yn,Z1, -+ Zp,} is an orthonormal basis in (g, || - ||) since {Y1,---,Y,}
and {Zy,--- Z,,} are orthonormal bases in (g1, || - ||1) and (gs, || - || g) respectively.
Now choose any other orthonormal generators Y{,Yy,--- Y. in (gq, ] - ||), let
1Zi k=1, m} ={[Y/,Y]]| 1 <i<j<n} Weclaim that

Zy, 24, -+, Z), are orthonormal in (g, | - ||).

It is sufficient to show that

(1) [Y{, Y] is perpendicular to [Yy, Y]],

(2) [Y{, Y] is perpendicular to [Yy, Y],

(3) [Y{,Y]] is a unit vector.

Since gy is spanned by {Y7,---,Y,}, let
Y/ = aiYi+aYe+-+4a,Y,
Y, = Yy +bYo+ - +0b,Y,
Yy = eVi+aYs+--+a,Y,

Y, = diYi+doYo+ - +4d,Y,

, Vai, b, ci,d; € Ry i=1,2,--- n. By assumption Y/, Y], Yy, Y/ are orthonormal.
There are some helpful identities:
D i1 aby =0, 370 aje; =0, 370 azd; =0, 375 bje; =0, 357, bid; =0,
> a? =1, and > iy b2 =1.
(1) We first verify that the inner product of [Y],Y;] and [Yy, Y]] is zero.

(Y7, 3], [¥y, Yi])

= (| S @Ys S Y] | S e X, dyYs))
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(S iV Vil Sy Y5 Vi)
= (2icjlaib; — biay)[V3, Y, 32, s (cidy — dic;)[Y3, Yi))
= 2ics(aibj — biag)(cid; — dicy)
=y ZJ i1 (@icibid; + bidiaje; — biciajd; — adibjc;)
= Zz:_1 {aici Zj:iﬂ bjd; + b;d; Zj:iﬂ ajc; — bic; ZJ i1 @5 — aid; Z;‘:Hl bjcj}
+apcy, - 0+ b,d, -0—"b,c, -0 —a,d, -0
= S0 {aiei(= 320 bidy) + bidi(— Y25 ajey) — bici(— Yoy ajd;) —
aidi(— Y5 bic) }
Fancn (=252 bjd;) +badn (= D25, ajcy) —buca(= 3775 ajd;) —andn (=327, bicy)
= {a1c1(=bidy) + bidi(—arc1) — biey(—ardy) — ardi(=bicy) }
+ 300, {aic(= Yoy bydy) + bidi(— X2y ajeg) — bici(— Y5y agdy) —
aidi(— 2, bic;) }
= {0} + i {aici(_ 23;11 bjd;) + bidi(— 23;11 ajc;) — bici(— Z; 11a]d ) —
aidi(— 312 biej) }
+3 0, {aicl-(—bidi) + bidi(—a;c;) — bici(—ad;) — aidi(—bici)}
=—>", Z;;ll {aic;bid; + bidiajc; — bica;d; — a;d;bic; }
S Z’.‘:—l Z?:jH {aicibd- + bid;ajc; — biciajd; — aidibjcj}
=—> Z] i1 {ajc]b d; + b;d;a;c; — bjcja;d; — ajdjbz-ci}
= — > ijlaiby — bia;)(cid; — dicy)
= — (Y7, V3], [¥3, Yil)
Thus, we get ([Y}, V3], [Yy, Y{]) = —([¥{, ¥3], [Y5, ¥J]), and hence
(Y7, ¥5],[¥3,Y{]) = 0.
(2) We now verify that the inner product of [Y{,Y;] and [Y7, Y5] is zero. Actually
we replace Y/ by —Y; in (1), in other words, replace d; by —b; in (1), then we get
(W, V3] [V, =Y3]) = = >, j(aibj — biaj)(ci(—b;) — (—bi)cy)
= — > icj(aib; — biaj)(bic; — ¢;by) = —([Y7, V3], [V3, Y5])

(Y1, 2], I3, Y3)
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So we have ([Y],Y5], [Y3,Y5]) = —([Y/, Y3], [¥7, ¥5]), and hence
(Y7, Y5], [Y2, Y5]) = 0.
(3) We now verify that [|[Y{,Y5]]]? = 1.
1Yy, 31|17
= 220 a:Ys, X 09501
=[Sty — by v il
= > ;@b — bia;)?
=3 Z] a(a fb? + bfa? — 2a;b;a;b;)
=@ S B B 0 — 200 agb |+
{a? -0+ b2 -0—2a,b, -0}
= S {0 = L 8+ 01— S a?) - 2aibi(— X agby) }
+ {ai (1 > i 1b]2> + b2 (1 -2 1a]> 2a,b,, <— > iy ajb >}
= {af (1 = 07) + b1 (1 — a?) — 2a1b1 (—a1bn)}
+z;12{a%<1 = S B+ B (1= i a?) = 2aibi(— Sy asb) )
= S i B S { @ S B Y 26 ) gt )
=1+1-30,5"0  {a?b? + ba? — 2a;bia;b;}
=2->", Z {a262 + b2a? — 2a;b;a;b; }
=23 D i 1ab? + 02ad — 2a:bia,b; }
=3 Z] i {a262 bra; — 2a;b;a;:b; }
=2, (aib; — bia;)”
=2 —[|[Y{, 3]II”

Thus we get ||[Y7, Y3]|I* = 2 — |I[Y{, ¥3]|I”, and hence ||[¥7, Y3]||* = 1.
We verified (1), (2), and (3), then this proved the claim. Therefore for any
orthonormal generators {Y/,Yy,--- Y}, their brackets

{[v7, YJ'] :1 <i < j <n} are also orthonormal with respect to the norm | - ||.

90



Motivation. Let g = F,, ». The previous lemma guarantees that there always
exist norms on g respecting the bracket. So now we give a norm on g respecting
the bracket. Let g* be the dual space of g, and use the operator norm on g*.
Choose an orthonormal basis B for g, let B* be its dual basis in g*. Then the
question is that whether B* is orthonormal or not? The following lemma answers
this question saying 'yes’. And more than that is the orthonormality of both bases

are equivalent for any finite-dimensional vector space g and its dual space g*.

Lemma 6.2. If g is an n-dimensional real vector space, let g* be its dual space.
Give any arbitrary norm on g, and use the corresponding operator norm on g*. If
B={X, X, ,X,} is a basis of g, let B* = {X], X5,---, X’} be its dual

basis. Then the orthonormality of B and B* in g and g* are equivalent.

Proof. We first claim that if B is an orthonormal basis of g, then so is B* for g*.
Let || - || be any given norm on g, and let || - ||, be the corresponding operator
norm on g*. Since B = {Xy,---,X,} is a basis of g, for each X € g, let

X =377 , a;X;. Since B is orthonormal, it follows || X|| = |/>_7_, aj. Since B* is
the dual basis of B, it means X;(X,) = d;;, Vi,j =1,2,---n. So

XP(X) = X7 (i 0 Xy) =200 o X (X)) = o, Vi= 1,2, .

Then

||Xi*||0p = Sup||X||:1’Xl*(X)| = Sup\/m:1|&i‘ = 17 Vi = 17 27 e, N

Thus, the orthonormality of B implies that the unit length of every basis element
of B*. We now want to verify the orthogonality of B*. It suffices to show that
1X5 + X5 llop = [1X7 — X5 llop, VI <@ # j < n. If this is done, it means that the
inner product of any distinct basis elements is zero. In other words, all basis

elements of B* are mutually perpendicular.
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For every X € g, let X =Y ,_, a;xXj. Then we have

1 X5+ X7 llop = supyxzi (X + X7)(X)] = Supmzﬁai +aj] =2

+ .
when a; = oj =— \/Li and other «4’s are zero. Meanwhile, we also have

1X5 — X7 lop = supy =1 [ (X; = X5)(X)] = Supmzﬁai —aj] =2

when a; = —q; :i \% and other ay’s are zero. So we get

1 X 4+ X7 lop = [ X" = X7 lop as desired, and hence we know the orthonormality
of Bin (g,| - ||) implies the orthonormality of B* in (g*, | - ||lop). Next we claim
that if B* is an orthonormal basis of g*, then so is B in g.

Let g*” be the dual space of g*. For every X € g, define X* (1) = I(X), VI € g*.
Then the map X +—— X*" is an isomorphism from g onto g*  since g is
finite-dimensional. Hence we can identify X** with X, VX* € g*". Let

B ={X;,X;,---, X} be the dual basis of B* = { X}, X3,---, X}. This
means X/ (X7) = 0y, i.e., X7(X;) = 8;5, V1 <4, j < n. We denote the operator

norm on g* by || - [/sup, SO

= supyy,,—1 | X ()] = supyy,, 1 [1(X)]

Xl
sup

By applying the argument of the first claim we know that the orthonormality of

o

B* in (g%, ] - ||lop) implies the orthonormality of B*" in (g*", || - ||sup)- Since every
X*" € g can be identified with X € g, it follows that the orthonormality of B*
in (g*, | - ||op) implies the orthonormality of B in (g, || - ||sup). S0 now the question
is that whether the operator norm || - ||sup on g obtained by identifying g with g*"
is the same as the original given norm || - || on g or not? The answer is positive.
Since B = { Xy, -+, X, } is an orthonormal basis of (g, || - ||), for every X € g, let

X =370 05X, then || X = || 77, i Xjll = /277 aF. Meanwhile, we also

know B is an orthonormal basis of (g, || - ||sup) by the identification of g with g* .
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50 11X |y = || 51 X,

= MZ?:l 04?. Thus, we get || X|| = || X ||sup, VX € g.
sup

Hence the operator norm on g = g* is the same as arbitrary given norm on g.
By both claims we conclude that the orthonormality of B in (g, || - ||) and B* in
(g%, || - llop) are equivalent for any arbitrary norm || - || on g and the corresponding

operator norm || - ||,, on g*.

Motivation. For g = F,, 2, the dimension of its center is m = @ Let

Y1, Ys, -+, Y, be n generators of g, and let
{217227'” 7Zm} = {Df'w}/j” 1 S { <,] S TL}, then B := {Zla"' 7Zm7}/1a"' 7Yn}
is a basis of g.

For every A € Aut(g), A has the (m +n) X (m + n) matrix relative to the basis B

Qme RmX?’L
On><m Pn><n

[Alg =

and each entry of ),,«,, is a polynomial in the variables of entries of P,,. We

next show the relation between determinants of P, y,, and Q,,xm-

Lemma 6.3. For g = F,, 9, let Y7,Y5,--- Y, be n generators of g, and let the
space S be spanned by all generators Y;. For each invertible linear operator P on
S, define the map Q : [g, 9] — [g, 0] by Q([Y;,Y]]) = [PY;, PY;], V1 <i < j <n,

then we have
det Q = (det P)"!

Proof. Let By :={[Y;,Y;]| 1 <i < j <n}, then By is a basis of [g, g]. There are

two cases depending upon the positive integer n.

Case 1. Suppose n is even.
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For each invertible linear operator P on S, let detQ be viewed as a function of n

column vectors PY7, PY,, -, PY,. Define a function F' : S — R by
F(PYy,PYs, -, PY,) = (det Q)7

then claim that F' = det P. If this is done, then the result det Q = (det P)"~!
follows immediately. Actually it is equivalent to show that F is an alternating

n-linear form on & which maps (Y3, --,Y,) to 1.

(1) If P is the identity operator on S, by definition

Q(Y:, Y;)) = [PY:, PY;] = [V;,Y;]. Then Q is the identity operator on [g, g, and

=] » =7

1

hence F(Y71,---,Y,) = (det Lyym)m1 = 1.

(2) Let P': § — S be the operator such that P'Y), = cPY}, for some non-zero
constant ¢, and P'Y; = PY;, Vi # k. And let ()’ be the corresponding operator of

P’ by definition. Since P'Y}, appears in brackets with exactly n-1 other vectors

P'Y;, it follows that det Q' = "' det @, and hence

F(P}/la 7P}/;c—1>CPYkaPYk’+17'” 7PYn) = (Cn_l detQ)ﬁ = C(detQ)ﬁ =

cF(PYy, -+, PY,)

(3) Let P': S — S be the operator such that P'Y; = PY; for some i # j, and
P'Y, = PY, for all s #i. Let ' be the corresponding operator of P’, then
Q'([Y:,Y;]) = [P'Y;, P'Y;] = [PY;, PY;] = 0. So one column of matrix [Q']s, is zero
vector, and hence det Q" = 0. It follows

~~
the i th term

F(P'Yy,--+ ,P'Y;,---P'Y; - P'Y,) = (det Q)71 =0

(4) In order to show linearity of F in each variable, we verify

F(P}/la ,PY;,l,Y—FCY,,PY;'+1,“- 7PYH):

94



F(P}/l’ ,PY;;I’YV’PY;_H’--- aPYn)+CF(P)/17"'P}/;—17Y/7PY;—I—la"' 7PYn)
for every Y)Y’ € S and ¢ € R where Y 4+ ¢Y’, Y, and Y’ are in the i th
component. Since P is bijective on the space S = R — span{Y;,--- ,Y,}, every

vector in S can be written as } 7, ¢;PY;. So it is sufficient to show property (2)

and F(PYy,--- ,PY;+ PY;,---  PY,) =
——

the i th term

F(PYy,---,PY,;,--- ,PY,)+ F(PYy,---, PY; .- PY,). Since we already
~~
the i th term

finished the proof of property (2), let’s verify the above identity.

Let P': & — S be the operator such that P'Y; = PY; + PY; for some i # j, and
P'Y, = PY, for all s #i. And let Q" be the corresponding operator of P’. Then by
definition F(PY1,--- , PYi_1, PY; + PY;, PYi1, -+, PY,) = F(P'Yy,- - | P'Y,) =
(det Q' )ﬁ Since the difference between [@)']5, and [Q]g, are the columns of the
brackets of PY; + PY; with other PY}’s for k # i, we next figure out what det @)’
is by considering each bracket of PY; + PY; with PY}, for k # 1.

For k =1 the bracket [PY7, PY; + PYj| = [PY1, PY;] + [PY1, PYj], it follows that
det Q' = det Q] + det Q) where [@Q)]5, and [Q)]s, are obtained by replacing the
column Q([PY:, PY; + PY;)) of [@]s, by Q'([PY:, PY:)) and Q/([PY:, PY;))
respectively. Notice that the vector PY; 4+ PYj is on the 4 th column of matrix
[P’'|5, where basis By = {Y1,---,Y,}. So [@Q5]s, has two identical columns
Q5([PY1, PY;]), and hence det Q4 = 0. Thus we get det @' = det @}, and note
that [Q}]s, has the same columns as [Q]g, except the columns
Qi([PY; + PY;, PYy]) for s =2,--- i —1,i+1,--- ,n.

For k = 2 the bracket [PY3, PY; + PY;| = [PY,, PY;] + [PY3, PYj], it follows that
det Q) = det Q + det QF where @ and Q) are obtained by replacing the column
QU([PYs, PY: + PY;)) of [@4]s, by @4([PYa, PY]) and Q}([PYs, PY;))

respectively. Then [Q5]g, has two identical columns Q4 ([PY>, PY;]), and hence
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det Q5 = 0. Thus we get det Q' = det Q] = det Q7, and note that [Q/]s, has the
same columns as [@]p, except the columns Qf([PY; + PY;, PYj]) for
§s=3,---,i—1,14+1,--- n.

Similar procedure applies to k =3,--- ,i—1,i+1,--- ,n, then we get

det Q' = det Q) = det Q" = -+ = det Q" ", and [Q'" ], has the same columns
as [Q]s,- Hence det Q" = det Q. Thus

F(PY,---, PY,_y, PY; + PY;, PYii1,-- -, PY,) = (det Q)77 = (det Q)

— F(PYy,---,PY;,--- ,PY},--- | PY,)

— F(PYy,---,PY;,--- , PY;,--- ,PY,) + F(PYy,--- , PY},--- , PY;,--- , PY;)
since F'(PYy,---,PY;,--- ,PY, ---  PY,) =0 by property (3). Therefore F is an

n-linear function.

(5) We now verify F is alternating.

0= F(PY;,---, PY;+ PY;,--- , PY; + PY;,--- | PY;)

~
the i th term the j th term

— F(PYy,---,PY;,--- ,PY; ---PY,) + F(PYy,--- , PY;,--- , PY;,--- PY},)

+F(PYy,---,PYj,--- ,PY;--- PY,) + F(PYy,--- , PY;,--- | PY;,--- PY;)

= F(PYy,---,PY;,---  PY;,--- PY,) + F(PYy,--- , PY},--- , PY;,--- PY;)
It follows that
F(PYy,---,PY;---  PY;,---PY,) = —F(PYy,--- , PY; ---  PY; --- PY,)
Hence F is alternating. Thus we know F is an alternating n-linear function which
maps (Y7,---,Y,) to 1, so F(PYy,---, PY,) = det P. Therefore

det Q = (det P)" 1.

Case 2. Suppose n is odd.
For each invertible linear operator P on S, define a function F' : S — R by

F(PYy,---,PY,) = (det Pdet Q)% where () is the corresponding operator of P
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defined as before. We claim that F' = det P. If this is done, then we get

(det Pdet Q)= = det P, and hence det P det Q = (det P)". So det Q = (det P)»*.

(1) If P is the identity operator on S, so is ). Then

F(Y1,-+,Y,) = (det Ik det Ty nwn))w = 1.
2

2
(2) The same assumption as in the property (2) of the first case, if P'Yy, = cPY}
for some index k, we obtain
F(PYi, - PYi_1,cPYy, PYis1, - PY,) = F(P'Yi, -, P'Y,) = (det P det Q)=
1

= ((cdet P)(c" 1 det Q))n = c(det Pdet Q)n = cF(PYy, -+, PYy, -+ , PY,)

(3) Let P': S — S be the operator such that P'Y; = PY; for some i # j, and
P'Y; = PYj for all s # i. Then det P’ = 0 since matrix [P']g, has two identical

column PY; where By = {Y1,---,Y,}. Let Q' be the corresponding operator of

P’. Then
F(PY'177 PY; R PY} ’PYn>:F(P/Y'1”P/Yn):
~~ —~~
the i th term the j th term

(det P'det Q)= =0

(4) In order to show the linearity of F, it suffices to verify property (2) and

——

the i th term
= F(PYy,---,PY;,--- ,PY,)+ F(PYy,---, PY; ,---,PY,)

~—~
the i th term

Let P': & — S be the operator such that P'Y; = PY; + PY; for some i # j, and
P'Y, = PY, for all s # i. Then det P’ = det P + det Py where [Pp|p, is the matrix
after replacing the ¢ th column PY; of [P]p, by PY;. So det P, = 0, and hence
det P’ = det P. Let Q' be the corresponding operator of P’. The same reason as
property (4) of the first case leads to the fact det Q' = det ). Hence

F(PYI’... ,PYi‘i‘PY},"‘7PYn):F(P,Yl,"‘,P/Y;,"',P’Yn)
he i th t
the © th term
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= (det P'det Q)n = (det Pdet Q)w = F(PY;,--- , PY;,--- , PY,)

= F(PYy,---,PY;,--- ,PY,) + F(PYy,---, PY; ,--- PY,)
he i th t
the i th term

Therefore F is an n-linear function.

(5) The same argument as in the property (5) of the first case leads to the fact
that F is alternating. Hence F is an alternating n-linear function which maps
(Yy,---,Y,) to 1. So F(PYy,--- , PY,) = det P, i.c., (det Pdet Q)= = det P.

Therefore det Q = (det P)"~'.

Lemma 6.4. For each n x n matrix R and almost all n X n matrix P, there
exists a unique n x n skew-symmetric matrix S such that R 4+ SP is an

upper-triangular matrix.

Proof. Given R = (Tij)nm, P = (pij>n><n’ let

0 —S521 —S31 Tt —Sn,1
Sp1 0 —s39 - —5Sp.2
S=| s31  s32 0
_Sn,nfl
L Sn,1 Sn,2 e Sn,n—1 0 )

Consider the last row of the n x n matrix SP + R, let (SP + R),,; =0,

Vi=1,2,---,n—1

Then we have n-1 linear equations with n-1 variables s,,1, 852, , Spn—1:
Sn,1P1,1 + Sn,2P2.1 + -+ Snn—1Pn—1,1 +0- Pni1 = —Tni
Sn,1P1,2 + Sn,2P02,2 + -+ Snn—1Pn—1,2 +0- Pn2 = —Tn2
Sn,1P1,n—1 + Sn,2P2,n—1 + - Sn,n—1Pn—1,n—1 +0- Pnn—1 = —Thn-1
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Let

P11 P21 0 Pn-11
P12 P22 Pn-1,2
Pnfl =
Pin—-1 P2n—-1 °°° Pn-1n-1
If det P,—1 # 0, then there exist unique solutions (s, 1, Sn2," - , Snn—1) With

dt Pt i =1,2,--+ ,n— 1, where each P isthe (n—1) x (n—1)

Sni = et Py_y

—Tn,1
_rn,Q
matrix of replacing the ¢ th column of P,_; by
_Tn,n—l
Consider the n-1 th row of n x n matrix SP + R, let (SP + R), ,, =0,
Vi=1,2,---,n— 2. Then we have n-2 linear equations with n-2 variables

Spn—1,1,8n-1,2," " * » Sn—1,n—2-

Sn—1,1P1,1 +- Sn—1,n—2Pn—-2,1 +0- Pn—11 — Sn,n—1Pn,1 + n—11 =

Sn—1,1P1,2 + * + Sn—1n—2Pn—22+ 0 Pn12 — Spn-1Pn2 +Th-12 =

Sn—1,1P1n—2t+ Sn—in—2Pn—2n-2+0 Dn_1n-2— Spn-1Pnn-2 + mn-ipn-2 =

It follows that

Sp—11P11 + -+ Sn—1n—2Pn-—21 = Spn-1Pn1 — Tn-1,1
Sp—11P12 t -+ Sn—1n—2Pn-—22 = Spn-1Pn2 — Tn—12
Sn—1,1P1,n—2 + -+ Spn—1,n—2Pn—2n—-2 = Snn—-1Pnn—2 — Tn—-1n—2
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Note that s, ,,—1 is a known number from the previous procedure of considering

the n th row of SP + R. Let

P11 P21 0 DPn-21
P12 P22 Pn—2.2
P, =
Pin—2 P2n—2 °°° Pn—2n-2
If det P,—o # 0, then there exist unique solutions (s,-11,Sn-12," " Sn—1.n-2)
with s,_1,; = 322?:2 Vi=1,2,--- ,n—2 where each P!_, is the (n —2) x (n — 2)

Snn—1Pn,1 — Tn—1,1

. . . Snn—1Pn,2 — Th—1,2
matrix of replacing the ¢ th column of P, 5 by

Snn—1Pnn—2 — T'n—1,n—2

Consider the n-2 th row of n x n matrix SP+ R, ---

Consider the third row of n x n matrix SP + R, let (SP+ R),; =0,i=1,2,

)

Then we have two linear equations with two variables s3 1, 53 2:

$31P1,1 + 832P21 + 0 P31 — S43Pa1 — S53P51 — *** — Sp3Pn1 + 731 = 0

531P1,2 + 832P22 + 0 P32 — S43D42 — S53P52 — **+ — Sp3Pn2 + 732 = 0

It follows that

83,1P1,1 T S3.2P2,1 = Sa3P41 + S53P51 + 0+ Sp3Pn1 — 73,1
83,1P1,2 + S3.2P22 = S43P42 + S53P52 + -+ Sp3Pn2 — 732
Note that s43, 553, -, sp,3 are known numbers from the procedures of

considering the n,n — 1,--- ,5,4 th row of matrix SP + R. Let

100



P11 P21
P2 =

P12 P22
If det P, # 0, then there exist unique solutions (s31, S32) with s3; = j%if,

i = 1,2, where each Pj is the 2 x 2 matrix of replacing the i th column of P, by

S4,3P4,1 + S53P5,1 + ++ + Sn3Pn1 — 73,1
S4,3P4,2 + S5.3D52 + +** + Sp3Pn2 — 732
Consider the second row of n x n matrix SP + R, let (SP + R),, = 0. Then we

have one linear equation with one variable sg ;:

$2,1P1,1 + 0 “P2,1 — S32P31 — Sa2Pa1 — - — Sp2Pnl T o1 = 0

It follows that

S$21P1,1 = S32P3,1 + Sa2P4,1 + -+ + Sn2Pn,1 — T2,1

Let 1 x 1 matrix Py := (p1,1). If det P; # 0, then there exists a unique solution
S91 = JT%’1(83,2103,1 + S49Pa1 + -+ Spapny — r21) such that (SP + R), , = 0.

In summary, if det P, #£ 0, Vi = 1,2,--- ,n — 1, then there exist unique solutions
(s21),(53.1,532)s 5 (Sn1sSn2, s Snm—1) such that SP+ Risann xn
upper-triangular matrix. In other words, for almost all P = (pij)nm and all

R = (145),,.,, there exists a unique skew-symmetric matrix

0 —S821 —$831 r —Sp-11 —Sn,1
$2,1 0 —832 T Sp—12 —Sn,2
83,1 532 0 crr —Sp_13  —Sp3
S =
Sp—11 Sn—-12 Sn-13 """ 0 —Sn,n—1
Sn,1 Sn,2 Sn,3 e Sn,n—1 0

such that SP + R is an n X n upper-triangular matrix. This proves the lemma.
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