Instructions: Do *five (5)* of the 8 problems, including at least one from Part A, one from Part B, and one from Part C. The remaining two problems can be from any parts. Start each chosen problem on a fresh sheet of paper and write your name at the top of each sheet. Clip your papers together in numerical order of the problems chosen when finished. You have 3 hours. Good luck!

Part A

- 1. Let G be a group of order 2p where p is an odd prime. If G has a normal subgroup of order 2, show that G is cyclic.
- 2. Let G be the group of invertible 2×2 upper triangular matrices with entries in \mathbb{R} . Let $D \subseteq G$ be the subgroup of invertible diagonal matrices and let $U \subseteq G$ be the subgroup of matrices of the form $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$ where $x \in \mathbb{R}$ is arbitrary.
 - (a) Show that U is a normal subgroup of G and that G/U is isomorphic to D.
 - (b) True or False (with justification): $G \cong U \times D$.

Part B

- 3. Let \mathbb{F} be a field and let $R = \mathbb{F}[X, Y]$ be the ring of polynomials in X and Y with coefficients from \mathbb{F} .
 - (a) Show that $M = \langle X + 1, Y 2 \rangle$ is a maximal ideal of R.
 - (b) Show that $P = \langle X + Y + 1 \rangle$ is a prime ideal of R.
 - (c) Is P a maximal ideal of R? Justify your answer.
- 4. Let $R = \mathbb{Z}[X]$. Answer the following questions about the ring R. You may quote an appropriate theorem, provide a counterexample, or give a short proof to justify your answer.
 - (a) Is R a unique factorization domain?
 - (b) Is R a principal ideal domain?
 - (c) Find the group of units of R.
 - (d) Find a prime ideal of R which is not maximal.
 - (e) Find a maximal ideal of R.

- 5. Let R be an integral domain. Determine if each of the following statements about R-modules is true or false. Give a proof or counterexample, as appropriate.
 - (a) A submodule of a free module is free.
 - (b) A submodule of a free module is torsion-free.
 - (c) A submodule of a cyclic module is cyclic.
 - (d) A quotient module of a cyclic module is cyclic.

Part C

- 6. Let $T: V \to W$ be a linear transformation between finite-dimensional vector spaces V and W. Show that dim Ker T + dim Im T = dim V.
- 7. Let $T : \mathbb{Q}^3 \to \mathbb{Q}^3$ be the linear transformation expressed relative to the standard basis $\mathbf{e}_1 = (1, 0, 0), \mathbf{e}_2 = (0, 1, 0), \mathbf{e}_3 = (0, 0, 1)$ by the matrix

[1	-1	3	
0	2	2	
1	0	4	

- (a) Find a basis for Ker(T).
- (b) Find a basis for Im(T).
- (c) Find the matrix for T expressed in the basis $\mathbf{f}_1 = (-1, 1, 0), \mathbf{f}_2 = (0, 1, -1), \mathbf{f}_3 = (1, 0, 1).$
- 8. Let S and T be linear transformations between finite-dimensional vector spaces V and W over the field \mathbb{F} . Show that Ker S = Ker T if and only if there is an invertible operator U on W such that S = UT.