Instructions: Do five (5) of the 8 problems, including at least one from Part A, one from Part B, and one from Part C. The remaining two problems can be from any parts. Start each chosen problem on a fresh sheet of paper and write your name at the top of each sheet. Clip your papers together in numerical order of the problems chosen when finished. You have 3 hours. Good luck!

Part A

1. Let G be a group of order $2 p$ where p is an odd prime. If G has a normal subgroup of order 2 , show that G is cyclic.
2. Let G be the group of invertible 2×2 upper triangular matrices with entries in \mathbb{R}. Let $D \subseteq G$ be the subgroup of invertible diagonal matrices and let $U \subseteq G$ be the subgroup of matrices of the form $\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$ where $x \in \mathbb{R}$ is arbitrary.
(a) Show that U is a normal subgroup of G and that G / U is isomorphic to D.
(b) True or False (with justification): $G \cong U \times D$.

Part B

3. Let \mathbb{F} be a field and let $R=\mathbb{F}[X, Y]$ be the ring of polynomials in X and Y with coefficients from \mathbb{F}.
(a) Show that $M=\langle X+1, Y-2\rangle$ is a maximal ideal of R.
(b) Show that $P=\langle X+Y+1\rangle$ is a prime ideal of R.
(c) Is P a maximal ideal of R ? Justify your answer.
4. Let $R=\mathbb{Z}[X]$. Answer the following questions about the ring R. You may quote an appropriate theorem, provide a counterexample, or give a short proof to justify your answer.
(a) Is R a unique factorization domain?
(b) Is R a principal ideal domain?
(c) Find the group of units of R.
(d) Find a prime ideal of R which is not maximal.
(e) Find a maximal ideal of R.
5. Let R be an integral domain. Determine if each of the following statements about R modules is true or false. Give a proof or counterexample, as appropriate.
(a) A submodule of a free module is free.
(b) A submodule of a free module is torsion-free.
(c) A submodule of a cyclic module is cyclic.
(d) A quotient module of a cyclic module is cyclic.

Part C

6. Let $T: V \rightarrow W$ be a linear transformation between finite-dimensional vector spaces V and W. Show that $\operatorname{dim} \operatorname{Ker} T+\operatorname{dim} \operatorname{Im} T=\operatorname{dim} V$.
7. Let $T: \mathbb{Q}^{3} \rightarrow \mathbb{Q}^{3}$ be the linear transformation expressed relative to the standard basis $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ by the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 2 & 2 \\
1 & 0 & 4
\end{array}\right]
$$

(a) Find a basis for $\operatorname{Ker}(T)$.
(b) Find a basis for $\operatorname{Im}(T)$.
(c) Find the matrix for T expressed in the basis $\mathbf{f}_{1}=(-1,1,0), \mathbf{f}_{2}=(0,1,-1), \mathbf{f}_{3}=$ $(1,0,1)$.
8. Let S and T be linear transformations between finite-dimensional vector spaces V and W over the field \mathbb{F}. Show that $\operatorname{Ker} S=\operatorname{Ker} T$ if and only if there is an invertible operator U on W such that $S=U T$.

