
Algebra Comprehensive/Qualifying Exam August, 2021

Instructions: Do five of the 8 problems, including at least one from Part A, one from Part B,
and one from Part C. The remaining two problems can be from any parts. Start each chosen
problem on a fresh sheet of paper and write your name at the top of each sheet. Clip your
papers together in numerical order of the problems chosen when finished. You have three hours.
Good luck!

Part A

1. (a) Decompose the following permutation into disjoint cycles:(
1 2 3 4 5 6 7 8
3 1 5 8 2 6 4 7

)
(b) How many conjugacy classes does the symmetric group S6 have? Explain your answer.

(c) How many Sylow 3-subgroups H does S6 have? What is the isomorphism type of H?

2. (a) Let A4 be the alternating group of 4 elements. Show that A4 has a normal subgroup
of index 3.

(b) Let G = SL2(F2) be the group of 2 by 2 matrices with entries in the finite field
F2 = Z/2 which have determinant 1 (modulo 2). How many elements does this group
have?

(c) Construct a nontrivial homomorphism G→ S3. Is it an isomorphism?

3. (a) Let G be a group with 21 elements. Show that G has a normal subgroup with 7
elements. Hint: Sylow theorem.

(b) If G is abelian, show that it is isomorphic to a product of cyclic groups C3 × C7.

(c) Is there a nonabelian group with 21 elements? Can you describe one?

Part B

4. Let R = Z[
√

2] = {a+ b
√

2 | a, b ∈ Z}.

(a) Show that 1 +
√

2 is a unit of R.

(b) Determine whether 3 +
√

2 is a prime element of R. Prove your assertion.

(c) Identity the isomorphism class of the quotient ring R/〈3+
√

2〉. Prove your assertion.

5. (a) Show that the polynomial f(X) = X3 − 25X2 + 10X − 15 is irreducible in Q[X].

(b) Is it irreducible in Z[X]? Explain.

(c) Show that F7[X]/〈X3 − 25X2 + 10X − 15〉 is a field with 343 elements.
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6. (a) Let f : A→ B be a homomorphism of commutative rings with identity, f(1) = 1. If
J ⊂ B is an ideal, then show that f−1J ⊂ A is an ideal.

(b) Show that f induces an injective ring homomorphism f̄ : A/f−1J → B/J .

(c) Define what it means for an ideal P ⊂ B to be a prime ideal. Then show that if P is
a prime ideal, then f−1P ⊂ A is a prime ideal.



Algebra Comprehensive/Qualifying Exam August, 2021

Part C

7. Let G be the abelian group with generators x, y, and z subject to the relations

3x + 6y − 3z = 0 ,
−3x − 4y + 3z = 0 ,

6x + 12y = 0 .

Determine the invariant factors and elementary divisors of G and write G as a direct sum
of cyclic groups. Show the work for your assertions.

8. Let f(X) = (X2 + 5)(X − 2) ∈ Q[X].

(a) Construct all the matrices A in M5(Q), up to similarity, with minimal polynomial
mA(X) = f(X) and determine their corresponding characteristic polynomials χA(X).

(b) Construct all the Jordan canonical forms A in M5(C), up to similarity, with minimal
polynomial mA(X) = f(X).


