Algebra Qualifying Exam, August 2022

Do five of the following problems, including at least one from each of parts A, B, and C.

Part A

- 1. Let G be a group and let Z denote the center of G.
 - (a) Show that Z is a normal subgroup of G.
 - (b) Show that if G/Z is cyclic, then G must be abelian.
 - (c) Let D_6 be the dihedral group of order 6. Find the center of D_6
- 2. Let p, q, and r be distinct prime numbers.
 - (a) Show that if G is a group of order pqr, then G is not simple.
 - (b) Show that G is solvable.
- 3. Let $G = \{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in \mathbb{R}, a > 0 \}$ and $N = \{ \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \mid c \in \mathbb{R} \}.$
 - (a) Show that N is a normal subgroup of G, and G/N is isomorphic to the multiplicative group \mathbb{R}_+ of positive real numbers.
 - (b) Find a group N' with $N \leq N' \leq G$ or prove that no such N' exists.

Part B

- 4. (a) Let R be an integral domain. Show that the group of units of the polynomial ring R[X] is equal to the group of units of the ground ring R.
 - (b) Show that this is not true for $R = \mathbb{Z}/4\mathbb{Z}$.
- 5. Let $R_1 = \mathbb{F}_p[X]/(X^2 2)$ and $R_2 = \mathbb{F}_p[X]/(X^2 3)$. Determine whether R_1 is isomorphic to R_2 in each of the cases p = 2, p = 5, and p = 11.
- 6. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

Part C

- 7. Let M be an R-module, and let $f: M \to M$ be an idempotent endomorphism. Prove that $M \cong \text{Ker}(f) \oplus \text{Im}(f)$.
- 8. Let V be a $\mathbb{Q}[x]$ -module corresponding to a matrix $A \in M_n(\mathbb{Q})$. Prove that V is cyclic if and only if the ideal Ann(V) is generated by the characteristic polynomial of A.