ALGEBRA QUALIFYING EXAM

August 2023

Answer five of the following ten questions, including at least one from each of parts I, II, and III.

Part I

- (1) Let $G = \left\{ \begin{bmatrix} a & b \\ 0 & a^{-1} \end{bmatrix} \mid a, b \in \mathbb{R}, \ a > 0 \right\}$ and $N = \left\{ \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix} \mid c \in \mathbb{R} \right\}$. These are groups under matrix multiplication.
 - (a) Show that N is a normal subgroup of G, and that G/N is isomorphic to the multiplicative group of positive real numbers \mathbb{R}^+ .
 - (b) Does there exist a group H such that $N \subseteq H \subseteq G$? Prove your answer.
- (2) Let G be a finite group, and suppose there is an automorphism $\sigma : G \to G$ with the following two properties: (i) $\sigma(g) = g$ if and only if g = 1, and (ii) $\sigma \circ \sigma$ is the identity map $G \to G$.
 - (a) Show that every element of G can be written in the form $x^{-1}\sigma(x)$.
 - (b) Show that G is abelian. (*Hint:* Apply σ to the expression from part (a).)
- (3) Let G be a group of order 105. Show that if G contains a normal Sylow 3-subgroup P, then P is contained in the center of G.

Part II

- (4) Let \mathbb{F} be a field, and let $R = \mathbb{F}[x, y]$ be the ring of polynomials in two variables with coefficients in \mathbb{F} .
 - (a) Show that $M = \langle x 3, y + 1 \rangle$ is a maximal ideal of R.
 - (b) Show that $P = \langle x^2 y \rangle$ is a prime ideal of R.
 - (c) Is P a maximal ideal of R? Justify your answer.
- (5) Let I be an ideal in a commutative ring R. Let

rad $I = \{r \in R \mid r^n \in I \text{ for some integer } n \ge 1\}.$

Prove that rad I is an ideal.

- (6) Let R be an integral domain that contains a field k as a subring. Then R can be regarded as a k-vector space. Assume that as a k-vector space, R is finite-dimensional. Prove that R is a field.
- (7) Show that the ring $\mathbb{Z}[x]$ is *not* a principal ideal domain.

Part III

- (8) Let Z[¹/₂] be the subring of Q generated by Z and ¹/₂. Is Z[¹/₂] finitely generated as a Z-module?
- (9) Let R be a ring, and let M be an R-module. Let $f: M \to M$ be an R-module homomorphism such that $f \circ f = f$. Prove that $M \cong \ker(f) \oplus \operatorname{im}(f)$.
- (10) Prove that there is no 2×2 matrix A with entries in \mathbb{C} satisfying $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$.
 - $\begin{bmatrix} 0 & 0 \end{bmatrix}$.