Algebra Qualifying Exam, January 2022

Do 5 of the following problems, including at least one from each of parts A, B, and C.

Part A

- 1. Let $G = \operatorname{GL}_2(\mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p , where p is a prime.
 - (a) Show that G has order $(p^2 1)(p^2 p)$.
 - (b) Show that for p = 2 the group G is isomorphic to the symmetric group S_3 .
- 2. Let p and q be distinct prime numbers.
 - (a) Show that if G is a group of order p^2q , then G is not simple.
 - (b) Is every group of order p^2q a semidirect product of proper subgroups? Prove your answer.
- 3. Let G be a group, and let H be a subgroup of G of index m.
 - (a) Show that there exists a homomorphism $\phi: G \to S_m$ whose kernel is a subgroup of H.
 - (b) If m is the smallest prime dividing the order of G, prove that H is normal by showing that it is the kernel of ϕ .

Part B

- 4. (a) Determine the primes p for which F_p[X]/(X² + 1) ≅ F_p × F_p. Prove your answer.
 (b) If F_p[X]/(X² + 1) ≇ F_p × F_p, is this quotient necessarily a field? Justify your answer.
- 5. (a) If F is a field, show that F[X] is a PID.
 (b) Is Z[X] a PID? Prove your answer.
- 6. Let R be a commutative ring with 1. Prove that the center of the matrix ring $M_n(R)$ is the set of scalar matrices $\{aI_n : a \in R\}$.

Part C

- 7. Let R be a ring. An R-module N is called *simple* if it is not the zero module and if it has no submodules except N and the zero submodule.
 - (a) Prove that any simple module N is isomorphic to R/M, where M is a maximal left ideal.
 - (b) Prove Schur's Lemma: Let $\varphi : S \to S'$ be a homomorphism of simple modules. Then either φ is zero, or it is an isomorphism.
- 8. Let R be a PID, and let M and N be two finitely generated R-modules. If $M \oplus M \cong N \oplus N$, show that $M \cong N$.