ALGEBRA QUALIFYING EXAM

January 2024

Answer five of the following ten questions, including at least one from each of parts I, II, and III.

Part I

- (1) Let $G = GL(2, \mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p , where p is a prime. Show that G has order $(p^2-1)(p^2-p)$.
- (2) Let G be a group of order 2p where p is an odd prime. If G has a normal subgroup of order 2, show that G is cyclic.
- (3) Prove that the product of two infinite cyclic groups is not cyclic.
- (4) Let G be a group of order 132. Show that G is not simple.

Part II

- (5) (a) Give an example of an integral domain with exactly 9 elements.
 - (b) Is there an integral domain with exactly 10 elements? Justify your answer.
- (6) Let R be an integral domain. Show that the group of units of the polynomial ring R[x] is equal to the group of units of the ring R.
- (7) Let R be a PID. Prove that every nonzero prime ideal in R is a maximal ideal.

Part III

- (8) Let Z[¹/₂] be the subring of Q generated by Z and ¹/₂. Prove or disprove: Z[¹/₂] is a free Z-module.
- (9) Let $M \subset \mathbb{Z}^n$ be a \mathbb{Z} -submodule of rank n. Prove that \mathbb{Z}^n/M is a finite group.
- (10) Suppose that A is a 3×3 complex matrix such that

$$A^2 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Show that A is diagonalizable.