Algebra Comprehensive Examination

August 2002

Directions. Choose six out of the ten problems below. Start each problem on a new sheet of paper. Put your name and the problem number at the top of every sheet. Hand in ONLY the six problems you want graded. You have 2 and $1 / 2$ hours for this test. Good luck!
(1) Let G be an abelian group and let $G_{\text {tors }} \subset G$ be the subset of elements of finite order.
(a) Show that $G_{\text {tors }}$ is a subgroup (called the torsion subgroup of $G)$.
(b) Show that if $f: G \rightarrow G^{\prime}$ is a homomorphism of abelian groups, then $f\left(G_{\text {tors }}\right) \subset G_{\text {tors }}^{\prime}$.
(c) Determine the torsion subgroup of the group $G=\mathbf{R} / \mathbf{Z}$ (the group law on \mathbf{R} and \mathbf{Z} is addition).
(2) A Möbius transformation is a rational function $f \in \mathbf{C}(z)$ of the form $f(z)=\frac{a z+b}{c z+d}$, where $a, b, c, d \in \mathbf{C}$ satisfy $a d-b c=1$. It is easy to check that composition of functions makes the set M of all Möbius transformations into a group (composition is defined by $(f \circ g)(z)=f(g(z))$ for any rational functions $f, g)$.
(a) Let $\phi: S L_{2}(\mathbf{C}) \rightarrow M$ be the map given by $\phi(A)(z)=\frac{a z+b}{c z+d}$ for $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbf{C})$. Show that ϕ is a group homomorphism.
(b) Show that ϕ induces a group isomorphism $\bar{\phi}: P S L_{2}(\mathbf{C}) \rightarrow M$. (Recall that $P S L_{2}(\mathbf{C})=S L_{2}(\mathbf{C}) /\{ \pm I\}$.)
(3) Let $<,>$ denote the standard inner product on \mathbf{R}^{n}. Let $v \in \mathbf{R}^{n}$ be a vector with $\langle v, v\rangle=1$ and let $\sigma_{v}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear transformation given by $\sigma(x)=x-2<x, v>v$.
(a) Show that σ_{v} is an orthogonal operator and that it satisfies $\sigma_{v}^{2}=1_{\mathbf{R}^{n}}$.
(b) Show that there is an orthonormal basis of \mathbf{R}^{n} such that the matrix of σ_{v} in this basis is of the form

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & I_{n-1}
\end{array}\right)
$$

(4) Let R be a commutative ring. An element $x \in R$ is called nilpotent if there is an integer $n \geq 1$ such that $x^{n}=0$. The subset $N \subset R$ of all nilpotent elements is called the nilradical of R.
(a) Show that the nilradical N is an ideal of R and that N is contained in all prime ideals of R.
(b) Determine the nilradical of the ring $\mathbf{Z} / 72 \mathbf{Z}$. Deduce a method to determine the nilradical of $\mathbf{Z} / n \mathbf{Z}$ for any n.
(5) The set $C(\mathbf{R})$ of all continuous functions $f: \mathbf{R} \rightarrow \mathbf{R}$ is a commutative ring with unity for the usual operations of addition and multiplication of functions. Let $I=\{f \in C(\mathbf{R})$: there exists $\epsilon>$ 0 such that $f(x)=0$ if $|x|<\epsilon\}$.
(a) Show that I is an ideal of $C(\mathbf{R})$
(b) Show that the quotient ring $C(\mathbf{R}) / I$ has a unique maximal ideal (a ring with this property is called local). Hint: Show that the ideal $M=\{f \in C(\mathbf{R}): f(0)=0\}$ of $C(\mathbf{R})$ is maximal and use the correspondence theorem.
(6) Let $F=\left\{\left(\begin{array}{cc}x & -3 y \\ y & x\end{array}\right): x, y \in \mathbf{Q}\right\}$.
(a) Show that F is a field under the usual matrix operations of addition and multiplication.
(b) Show that F is isomorphic to $\mathbf{Q}(\sqrt{-3})=\{x+y \sqrt{-3}: x, y \in$ $\mathbf{Q}\} \subset \mathbf{C}$.
(7) (a) State the Structure Theorem for Finitely Generated Abelian Groups
(b) Determine whether the finite abelian groups $A=\mathbf{Z} / 6 \mathbf{Z} \times \mathbf{Z} / 8 \mathbf{Z}$ and $B=\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 24 \mathbf{Z}$ are isomorphic. Justify your answer.
(8) Determine the structure of the abelian group (as in the Structure Theorem for Finitely Generated Abelian Groups) generated by \mathbf{x}, \mathbf{y}, \mathbf{z}, subject to the relations

$$
\begin{array}{r}
8 \mathbf{x}+12 \mathbf{y}+4 \mathbf{z}=0 \\
14 \mathbf{x}+24 \mathbf{y}+8 \mathbf{z}=0 \\
4 \mathbf{x}+24 \mathbf{y}+4 \mathbf{z}=0
\end{array}
$$

(9) (a) Let F be a field and let $p, q \in F[X]$ be distinct irreducible monic polynomials. How many conjugacy classes of matrices A are there with characteristic polynomial $p^{2} q^{3}$?
(b) List representatives of all conjugacy classes of matrices in $M_{5}(F)$ with characteristic polynomial $f=X^{2}(X+1)^{3}$.
(10) Let $N: \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ be a nilpotent operator. (Recall that N is nilpotent if $N^{r}=0$ for some integer $r \in \mathbf{N}$).
(a) Show that the number of Jordan blocks in the canonical Jordan form of N is equal to $\operatorname{dim} \operatorname{ker}(N)$.
(b) Show that the size of the largest Jordan block of N is equal to the nilpotency index of N (Recall that the nilpotency index of N is the smallest $r \in \mathbf{N}$ such that $N^{r}=0$).
(c) Find the Jordan canonical form of the nilpotent operator N : $\mathbf{C}^{6} \rightarrow \mathbf{C}^{6}$ given by the matrix

$$
\left(\begin{array}{cccccc}
2 & 2 & 2 & 2 & 4 & 2 \\
0 & -1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & -1 \\
0 & -1 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & -1 & -2 & -1
\end{array}\right) .
$$

