Directions. Do exercises 1, 2, and 3, plus any two of the remaining four problems. Start each problem on a new sheet of paper, and put your name and the problem number at the top of every sheet. Hand in only the five problems that you want graded. The time available for the exam is two and one-half hours. Good luck!

1. Let H be a normal subgroup of a group G, and let K be a subgroup of H.
(a) Give an example of this situation where K is not a normal subgroup of G.
(b) Prove that if the normal subgroup H is cyclic, then K is a normal subgroup of G.
2. Let $R=\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$. Answer the following questions (with proof) about R.
(a) Why is R an integral domain?
(b) What are the units in R ?
(c) Is the element 2 irreducible in R ?
(d) Is 2 a prime element of R ?
3. Let

$$
A=\left[\begin{array}{rrr}
-1 & -2 & -2 \\
2 & 3 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Find the characteristic polynomial $c_{A}(X)$ and minimal polynomial $m_{A}(X)$.
(b) For each eigenvalue λ of A, find the algebraic multiplicity $\nu_{\mathrm{alg}}(\lambda)$ and the geometric multiplicity $\nu_{\text {geom }}(\lambda)$.
(c) Find the Jordan canonical form J of the matrix A.
(d) Find an invertible matrix P such that $P^{-1} A P=J$.
4. Let R be an integral domain and let M be an R-module. Give the definition of each of the following terms:
(a) M is a free R-module.
(b) M is a cyclic R-module.

Now determine if each of the following statements about R-modules is true or false. Give a proof if true or, if false, give a counterexample and be sure to prove that your counterexample is a counterexample.
(c) A submodule of a free module is free.
(d) A submodule of a cyclic module is cyclic.
(e) A quotient module of a free module is free.
(f) A quotient module of a cyclic module is cyclic.
5. Let $T: V \rightarrow W$ be a linear transformation between finite-dimensional vector spaces V and W. Show that $\operatorname{dim}(\operatorname{Ker} T)+\operatorname{dim}(\operatorname{Im} T)=\operatorname{dim} V$.
6. Let R be a commutative ring with identity and let I and J be ideals of R. Define a subset of R by

$$
(I: J)=\{r \in R: r x \in I \text { for all } x \in J\} .
$$

(a) Show that $(I: J)$ is an ideal of R containing I.
(b) Show that if P is a prime ideal of R and $x \notin P$, then $(P:\langle x\rangle)=P$, where $\langle x\rangle$ denotes the principal ideal generated by x.
7. List without repetition all of the abelian groups of order $72=3^{2} 2^{3}$, in elementary divisor form. Identify which group on your list is isomorphic to each of the following groups.
(a) \mathbb{Z}_{72}
(b) $\mathbb{Z}_{4} \times \mathbb{Z}_{18}$
(c) $\mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6}$

