Directions. Do the first exercise and any four of the remaining six problems. Start each problem on a new sheet of paper, and put your name and the problem number at the top of every sheet. Hand in only the five problem that you want graded. The time available for the exam is two and one-half hours. Good luck!

1. Give an example of each of the following. No proofs are required for this exercise only.
(a) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose minimal polynomial is $m_{T}(X)=$ $X^{2}-2 X+1$
(b) An element σ of order 12 in the alternating group A_{10}.
(c) Two nonisomorphic groups of order 30 .
(d) A commutative ring R and an ideal I of R that is prime but not maximal.
(e) A unique factorization domain (UFD) that is not a principal ideal domain (PID).
2. Let G be the group of invertible 2×2 upper triangular matrices with entries in \mathbb{R}. Let

$$
D=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]: a d \neq 0\right\} \subseteq G
$$

be the subgroup of invertible diagonal matrices and let $U \subseteq G$ be the subgroup of matrices of the form $\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$ where $x \in \mathbb{R}$ is arbitrary.
(a) Show that U is a normal subgroup of G and that G / U is isomorphic to D.
(b) True or False (with justification): $G \cong U \times D$
3. Let \mathbb{F} be a field and let R be the following subring of the ring of 2×2 matrices $M_{2}(\mathbb{F})$:

$$
R=\left\{\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]: a, b, c, \in \mathbb{F}\right\}
$$

and let $J=\left\{\left[\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right]: d \in \mathbb{F}\right\} \subseteq R$. Show that J is a (two-sided) ideal of R and that there is a ring isomorphism

$$
\varphi: R / J \rightarrow \mathbb{F} \times \mathbb{F}
$$

where, as usual, $\mathbb{F} \times \mathbb{F}$ denotes the cartesian product of \mathbb{F} with itself (as a ring).
4. Let \mathbb{F} be a field, V a finite dimensional vector space over \mathbb{F} and $T: V \rightarrow V$ a linear transformation whose minimal polynomial $m_{T}(X) \in \mathbb{F}[X]$ is irreducible. Use T to make the vector space V into an $\mathbb{F}[X]$-module, denoted V_{T}, in the usual way by defining the scalar multiplication $f(X) \cdot v=f(T)(v)$ for all $f(X) \in \mathbb{F}[X]$ and $v \in V$.
(a) Let $v \in V$ be a nonzero vector and let $V_{1}=\mathbb{F}[X] v$ be the cyclic submodule of V_{T} generated by v. Show that V_{1} is the subspace of V spanned by v and the vectors $T^{n}(v)$ for all positive $n \in \mathbb{Z}$, and prove that $\operatorname{dim}_{\mathbb{F}} V_{1}=\operatorname{deg}\left(m_{T}(X)\right)$.
(b) Prove that $\operatorname{deg}\left(m_{T}(X)\right)$ divides $\operatorname{dim}_{\mathbb{F}} V$.
5. Let H_{1} be the subgroup of \mathbb{Z}^{2} generated by $(6,6)$ and $(6,4)$ and let H_{2} be the subgroup of \mathbb{Z}^{2} generated by $(3,1)$ and $(3,5)$. Determine if the quotient groups $G_{1}=\mathbb{Z}^{2} / H_{1}$ and $G_{2}=\mathbb{Z}^{2} / H_{2}$ are isomorphic.
6. Consider the following three matrices in $M_{3}(\mathbb{C})$.
(i) $\left[\begin{array}{ccc}3 & 0 & 0 \\ 3 & -1 & 3 \\ 0 & 0 & 2\end{array}\right]$
(ii) $\left[\begin{array}{ccc}3 & 0 & 0 \\ 2 & 3 & -1 \\ 0 & 0 & 3\end{array}\right]$
(iii) $\left[\begin{array}{ccc}3 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 0 & 3\end{array}\right]$
(a) Find the characteristic polynomial $c_{A}(X)$ for each of the matrices above.
(b) Find the minimal polynomial $m_{A}(X)$ for each of the matrices above.
(c) Find the Jordan canonical form for each of the matrices above.
7. Let R be a commutative ring with identity, and let I and J be ideals of R.
(a) Define what is meant by the sum $I+J$ and the product $I J$ of the ideals I and J.
(b) Define maximal ideal.
(c) If I and J are distinct maximal ideals, show that $I+J=R$ and $I \cap J=I J$.

