Directions. Do the first exercise and any four of the remaining six problems. Start each problem on a new sheet of paper, and put your name and the problem number at the top of every sheet. Hand in *only* the five problem that you want graded. The time available for the exam is two and one-half hours. Good luck!

- 1. Give an example of each of the following. No proofs are required for this exercise only.
 - (a) A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose minimal polynomial is $m_T(X) = X^2 2X + 1$.
 - (b) An element σ of order 12 in the alternating group A_{10} .
 - (c) Two nonisomorphic groups of order 30.
 - (d) A commutative ring R and an ideal I of R that is prime but not maximal.
 - (e) A unique factorization domain (UFD) that is not a principal ideal domain (PID).
- 2. Let G be the group of invertible 2×2 upper triangular matrices with entries in \mathbb{R} . Let

$$D = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} : ad \neq 0 \right\} \subseteq G$$

be the subgroup of invertible diagonal matrices and let $U \subseteq G$ be the subgroup of matrices of the form $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$ where $x \in \mathbb{R}$ is arbitrary.

- (a) Show that U is a normal subgroup of G and that G/U is isomorphic to D.
- (b) True or False (with justification): $G \cong U \times D$
- 3. Let \mathbb{F} be a field and let R be the following subring of the ring of 2×2 matrices $M_2(\mathbb{F})$:

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c, \in \mathbb{F} \right\},\$$

and let $J = \left\{ \begin{bmatrix} 0 & d \\ 0 & 0 \end{bmatrix} : d \in \mathbb{F} \right\} \subseteq R$. Show that J is a (two-sided) ideal of R and that there is a ring isomorphism

$$\varphi: R/J \to \mathbb{F} \times \mathbb{F},$$

where, as usual, $\mathbb{F} \times \mathbb{F}$ denotes the cartesian product of \mathbb{F} with itself (as a ring).

- 4. Let \mathbb{F} be a field, V a finite dimensional vector space over \mathbb{F} and $T: V \to V$ a linear transformation whose minimal polynomial $m_T(X) \in \mathbb{F}[X]$ is *irreducible*. Use T to make the vector space V into an $\mathbb{F}[X]$ -module, denoted V_T , in the usual way by defining the scalar multiplication $f(X) \cdot v = f(T)(v)$ for all $f(X) \in \mathbb{F}[X]$ and $v \in V$.
 - (a) Let $v \in V$ be a nonzero vector and let $V_1 = \mathbb{F}[X]v$ be the cyclic submodule of V_T generated by v. Show that V_1 is the subspace of V spanned by v and the vectors $T^n(v)$ for all positive $n \in \mathbb{Z}$, and prove that $\dim_{\mathbb{F}} V_1 = \deg(m_T(X))$.
 - (b) Prove that $\deg(m_T(X))$ divides $\dim_{\mathbb{F}} V$.

- 5. Let H_1 be the subgroup of \mathbb{Z}^2 generated by (6, 6) and (6, 4) and let H_2 be the subgroup of \mathbb{Z}^2 generated by (3, 1) and (3, 5). Determine if the quotient groups $G_1 = \mathbb{Z}^2/H_1$ and $G_2 = \mathbb{Z}^2/H_2$ are isomorphic.
- 6. Consider the following three matrices in $M_3(\mathbb{C})$.

	[3	0	0		3	0	0]		3	2	-1
(i)	3	-1	3	(ii)	2	3	-1	(iii)	0	3	-2
	0	0	2		0	0	3		0	0	3

- (a) Find the characteristic polynomial $c_A(X)$ for each of the matrices above.
- (b) Find the minimal polynomial $m_A(X)$ for each of the matrices above.
- (c) Find the Jordan canonical form for each of the matrices above.
- 7. Let R be a commutative ring with identity, and let I and J be ideals of R.
 - (a) Define what is meant by the sum I + J and the product IJ of the ideals I and J.
 - (b) Define maximal ideal.
 - (c) If I and J are distinct maximal ideals, show that I + J = R and $I \cap J = IJ$.