Directions. Do exercises 1, 2, and 3, plus any two of the remaining four problems. Start each problem on a new sheet of paper, and put your name and the problem number at the top of every sheet. Hand in **only** the five problems that you want graded. The time available for the exam is two and one-half hours. Good luck!

- 1. Let H_1 be the subgroup of \mathbb{Z}^2 generated by $\{(1, 3), (1, 7)\}$ and let H_2 be the subgroup of \mathbb{Z}^2 generated by $\{(2, 4), (2, 6)\}$. Answer the following questions. Naturally, proofs are required.
 - (a) Are the subgroups H_1 and H_2 isomorphic?
 - (b) Are the quotient groups $G_1 = \mathbb{Z}^2/H_1$ and $G_2 = \mathbb{Z}^2/H_2$ isomorphic?
- 2. Let R be a commutative ring with identity, and let I and J be ideals of R.
 - (a) Define what is meant by the sum I + J and the product IJ of the ideals I and J.
 - (b) Define maximal ideal.
 - (c) If I and J are distinct maximal ideals, show that I + J = R and $I \cap J = IJ$.
- 3. Let

$$A = \begin{bmatrix} -2 & 0 & 1\\ 2 & -1 & -2\\ -1 & 0 & 0 \end{bmatrix}$$

- (a) Find the characteristic polynomial $c_A(X)$ and minimal polynomial $m_A(X)$.
- (b) For each eigenvalue λ of A, find the algebraic multiplicity $\nu_{\text{alg}}(\lambda)$ and the geometric multiplicity $\nu_{\text{geom}}(\lambda)$.
- (c) Find the Jordan canonical form J of the matrix A.
- (d) Find an invertible matrix P such that $P^{-1}AP = J$.
- 4. Let H and N be subgroups of a group G with N normal. Prove that HN = NH and that this set is a subgroup of G.
- 5. Let R be an integral domain. Recall that a nonzero element $p \in R$ that is not a unit is prime if p|ab implies that p|a or p|b, while p is *irreducible* if p = ab implies that either a or b is a unit.
 - (a) Prove that if p is prime then p is irreducible.
 - (b) Prove that if R is a UFD (unique factorization domain) then every irreducible element is prime.
- 6. Let N be a submodule of an R-module M. Show that if N and M/N are finitely generated, then M is finitely generated.
- 7. Let V be a finite dimensional vector space over \mathbb{R} and let $T: V \to V$ be a linear transformation. Assume that the invariant factors of T are the two polynomials

$$f_1(X) = (X^2 - 1)(X - 3)$$
 and $f_2(X) = (X^2 - 1)^2(X - 3)^3$.

- (a) What is the minimal polynomial $m_T(X)$, characteristic polynomial $c_T(X)$, and, $\dim_{\mathbb{R}} V$, the dimension of V over \mathbb{R} ?
- (b) Determine the Jordan canonical form for T.