Directions. Do exercises 1, 2, and 3, plus any two of the remaining four problems. Start each problem on a new sheet of paper, and put your name and the problem number at the top of every sheet. Hand in only the five problems that you want graded. The time available for the exam is two and one-half hours. Good luck!

1. Let H_{1} be the subgroup of \mathbb{Z}^{2} generated by $\{(1,3),(1,7)\}$ and let H_{2} be the subgroup of \mathbb{Z}^{2} generated by $\{(2,4),(2,6)\}$. Answer the following questions. Naturally, proofs are required.
(a) Are the subgroups H_{1} and H_{2} isomorphic?
(b) Are the quotient groups $G_{1}=\mathbb{Z}^{2} / H_{1}$ and $G_{2}=\mathbb{Z}^{2} / H_{2}$ isomorphic?
2. Let R be a commutative ring with identity, and let I and J be ideals of R.
(a) Define what is meant by the sum $I+J$ and the product $I J$ of the ideals I and J.
(b) Define maximal ideal.
(c) If I and J are distinct maximal ideals, show that $I+J=R$ and $I \cap J=I J$.
3. Let

$$
A=\left[\begin{array}{rrr}
-2 & 0 & 1 \\
2 & -1 & -2 \\
-1 & 0 & 0
\end{array}\right]
$$

(a) Find the characteristic polynomial $c_{A}(X)$ and minimal polynomial $m_{A}(X)$.
(b) For each eigenvalue λ of A, find the algebraic multiplicity $\nu_{\mathrm{alg}}(\lambda)$ and the geometric multiplicity $\nu_{\text {geom }}(\lambda)$.
(c) Find the Jordan canonical form J of the matrix A.
(d) Find an invertible matrix P such that $P^{-1} A P=J$.
4. Let H and N be subgroups of a group G with N normal. Prove that $H N=N H$ and that this set is a subgroup of G.
5. Let R be an integral domain. Recall that a nonzero element $p \in R$ that is not a unit is prime if $p \mid a b$ implies that $p \mid a$ or $p \mid b$, while p is irreducible if $p=a b$ implies that either a or b is a unit.
(a) Prove that if p is prime then p is irreducible.
(b) Prove that if R is a UFD (unique factorization domain) then every irreducible element is prime.
6. Let N be a submodule of an R-module M. Show that if N and M / N are finitely generated, then M is finitely generated.
7. Let V be a finite dimensional vector space over \mathbb{R} and let $T: V \rightarrow V$ be a linear transformation. Assume that the invariant factors of T are the two polynomials

$$
f_{1}(X)=\left(X^{2}-1\right)(X-3) \quad \text { and } \quad f_{2}(X)=\left(X^{2}-1\right)^{2}(X-3)^{3}
$$

(a) What is the minimal polynomial $m_{T}(X)$, characteristic polynomial $c_{T}(X)$, and, $\operatorname{dim}_{\mathbb{R}} V$, the dimension of V over \mathbb{R} ?
(b) Determine the Jordan canonical form for T.

