Directions. Do five of the following six problems. Start each problem on a new sheet of paper, and put your name and the problem number at the top of every sheet. Hand in only the five problems that you want graded. You have 3 hours to complete this test. Good luck!

Problem 1. Let S_{5} be the symmetric group on 5 elements.
(a) Find an element of S_{5} of order 6 .
(b) Show that there is no element of order 12 in S_{5}.
(c) Are the two elements

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 2 & 5 & 4
\end{array}\right) \text { and }\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 4 & 1 & 2
\end{array}\right)
$$

of S_{5} conjugate? If yes, find an element giving the conjugation. If not, prove your answer (citing an appropriate theorem).

Problem 2. Let $R=\mathbb{Z}[X]$ be the polynomial ring in one variable with coefficients in the ring \mathbb{Z} of integers. Let $I=\left(X^{2}+2,7\right) \subset R$ be the ideal generated by $X^{2}+2$ and 7 , and let $J=$ $\left(X^{2}+1,5\right) \subset R$ be the ideal generated by $X^{2}+1$ and 5 . Answer the following questions and give a short proof of your answer in each case.
(a) Is I a maximal ideal? Is J a maximal ideal?
(b) Is I a prime ideal? Is J a prime ideal?

Problem 3.

(a) Show that every finite field has p^{r} elements where p is a prime and $r>0$ an integer.
(b) Construct a field with 81 elements and show that your construction does indeed yield a field (with 81 elements).

Problem 4. Let $N \subset \mathbb{Z}^{3}$ be the submodule of \mathbb{Z}^{3} generated by

$$
\left(\begin{array}{c}
9 \\
2 \\
-5
\end{array}\right),\left(\begin{array}{c}
6 \\
2 \\
-2
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{c}
6 \\
6 \\
10
\end{array}\right) .
$$

Write the quotient \mathbb{Z}-module \mathbb{Z}^{3} / N as a direct sum of cyclic \mathbb{Z}-modules. List elementary divisors and invariant factors of \mathbb{Z}^{3} / N.

Problem 5. Find, up to similarity, all matrices $A \in M_{4}(\mathbb{Q})$ satisfying

$$
A^{2}+A+I=0
$$

where $I \in M_{4}(\mathbb{Q})$ is the identity matrix. In each case, list the minimal polynomial, the characteristic polynomial, the rational canonical form and (if it exists) the Jordan canonical form of A.

Problem 6. Let G be a group of order $|G|=p^{r}$ where p is a prime and $r>0$ an integer. Show that G has a non-trivial center, that is, $Z(G) \neq 1$.

