Algebra

Directions. Do five of the following six problems. Start each problem on a new sheet of paper, and put your name and the problem number at the top of every sheet. Hand in only the five problems that you want graded. You have 3 hours to complete this test. Good luck!

Problem 1. Let *S*₅ be the symmetric group on 5 elements.

- (a) Find an element of S_5 of order 6.
- (b) Show that there is no element of order $12 \text{ in } S_5$.
- (c) Are the two elements

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$

of S_5 conjugate? If yes, find an element giving the conjugation. If not, prove your answer (citing an appropriate theorem).

Problem 2. Let $R = \mathbb{Z}[X]$ be the polynomial ring in one variable with coefficients in the ring \mathbb{Z} of integers. Let $I = (X^2 + 2, 7) \subset R$ be the ideal generated by $X^2 + 2$ and 7, and let $J = (X^2 + 1, 5) \subset R$ be the ideal generated by $X^2 + 1$ and 5. Answer the following questions and give a short proof of your answer in each case.

- (a) Is *I* a maximal ideal? Is *J* a maximal ideal?
- (b) Is *I* a prime ideal? Is *J* a prime ideal?

Problem 3.

- (a) Show that every finite field has p^r elements where p is a prime and r > 0 an integer.
- (b) Construct a field with 81 elements and show that your construction does indeed yield a field (with 81 elements).

Problem 4. Let $N \subset \mathbb{Z}^3$ be the submodule of \mathbb{Z}^3 generated by

$$\begin{pmatrix} 9\\2\\-5 \end{pmatrix}$$
, $\begin{pmatrix} 6\\2\\-2 \end{pmatrix}$, and $\begin{pmatrix} 6\\6\\10 \end{pmatrix}$.

Write the quotient \mathbb{Z} -module \mathbb{Z}^3/N as a direct sum of cyclic \mathbb{Z} -modules. List elementary divisors and invariant factors of \mathbb{Z}^3/N .

Problem 5. Find, up to similarity, all matrices $A \in M_4(\mathbb{Q})$ satisfying

$$A^2 + A + I = 0$$

where $I \in M_4(\mathbb{Q})$ is the identity matrix. In each case, list the minimal polynomial, the characteristic polynomial, the rational canonical form and (if it exists) the Jordan canonical form of A.

Problem 6. Let *G* be a group of order $|G| = p^r$ where *p* is a prime and r > 0 an integer. Show that *G* has a non-trivial center, that is, $Z(G) \neq 1$.