Instructions: Do *five (5)* problems, at least two from Part A, at least two from Part B, and one other from either part. Start each chosen problem on a fresh sheet of paper and write your name at the top of each sheet. Clip your papers together in numerical order of the problems chosen when finished. You have 3 hours. *Good luck!*

Part A

- 1. Let G be a group and let Z denote the center of G.
 - (a) Show that Z is a normal subgroup of G.
 - (b) Show that if G/Z is cyclic, then G must be abelian.
- 2. Let H_1 be the subgroup of \mathbb{Z}^2 generated by $\{(12, -8), (8, -4)\}$ and let H_2 be the subgroup of \mathbb{Z}^2 generated by $\{(-10, 4), (-4, 0)\}$. Are the quotient groups $G_1 = \mathbb{Z}^2/H_1$ and $G_2 = \mathbb{Z}^2/H_2$ isomorphic?
- 3. Let $\varphi: G \to H$ be a *surjective* group homomorphism and let N be a normal subgroup of G. Show that $\varphi(N)$ is a normal subgroup of H. What happens if φ is not surjective? Explain your answer.
- 4. Suppose a group G of order 2^n acts on a set X of odd cardinality. Show that there is some $x \in X$ whose stabilizer, $\{g \in G \mid gx = x\}$ is equal to G.

Part B

- 1. Let R be an integral domain containing a field k as a subring. Suppose that R is a finitedimensional vector space over k, with scalar multiplication being the multiplication in R. Prove that R is a field.
- 2. Suppose that R is an integral domain and X is an indeterminate.
 - (a) Prove that if R is a field, then the polynomial ring R[X] is a PID (principal ideal domain).
 - (b) Show, conversely, that if R[X] is a PID, then R is a field.
- 3. Let R be a ring and M an R-module.
 - (a) What does it mean for M to be a *free* R-module?
 - (b) Let $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$ denote the **subring** of \mathbb{Q} generated by \mathbb{Z} and $\frac{1}{2}$. Prove or disprove: $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$ is a free \mathbb{Z} -module.
- 4. Let R be an integral domain. Determine if each of the following statements about R-modules is true or false. Give a proof or counterexample, as appropriate.
 - (a) A submodule of a free module is free.
 - (b) A submodule of a free module is torsion-free.
 - (c) A submodule of a cyclic module is cyclic.
 - (d) A quotient module of a cyclic module is cyclic.