Mathematics Comprehensive Examination

Core I -Analysis

August 2015
Directions: There are two parts to the exam. Solutions to at least two problems must be turned in from each part. Solutions to 5 problems are required.

Part I.

1. Let $E \subset \mathbb{R}$ be Lebesgue measurable. Suppose $\forall c$, s.t., $0<c<1$ and all intervals I that $m(E \cap I) \leq c m(I)$. Show $m(E)=0$.
2. Show if f is a Lebesgue measurable real valued function and g a continuous function defined on $(-\infty, \infty)$ then $g \circ f$ is measurable.
3. Let g be monotone increasing and absolutely continuous on $[a, b]$ with $g(a)=c$ and $g(b)=d$. Let m denote Lebesgue measure and show for any open set $\mathcal{O} \subset[c, d]$

$$
m(\mathcal{O})=\int_{g^{-1}(\mathcal{O})} g^{\prime}(x) d x
$$

Part II.

1. Let f be defined by $f(0)=0$ and $f(x)=x \sin \left(\frac{1}{x}\right)$ for $x \neq 0$. Is f of bounded variation on $[-1,1]$? If it is prove why otherwise demonstrate that it is not.
2. Give a proof or provide a counterexample for the following statement. Continuous functions defined on $[a, b]$ are Lebesgue measurable functions.
3. Let $f(x, t)$ be defined on $\{(x, t): 0 \leq x \leq 1,0 \leq t \leq 1\}$ and suppose: 1) f is a Lebesgue measurable function of x for each fixed value of t and f is continuous in t for each x and 2) there is an integrable function $g(x)$ such that $g(x) \geq|f(x, t)|$. Show $h(t)=\int f(x, t) d x$ is a continuous function of t.
4. Let g be a monotone increasing absolutely continuous function on $[a, b]$ with $g(a)=c, g(b)=d$ and let f be an integrable function on $[c, d]$. Let

$$
F(y)=\int_{c}^{y} f(t) d t
$$

and set $H(x)=F(g(x))$. Show H is absolutely continuous and that $F^{\prime}(g(x))$ exists whenever H^{\prime} and g^{\prime} exist and $g^{\prime}(x) \neq 0$. Therefore $H^{\prime}(x)=$ $F^{\prime}(g(x)) g^{\prime}(x)$ almost everywhere except on the set where $g^{\prime}(x)=0$.

