Directions: Write your solutions on the blank paper provided, in the order in which they appear on the exam. (Leave a blank page so you can come back to insert a problem in order if you temporarily skip one.) Both problems in Part A are required. Also pick any three of the five in Part B. Thus exactly five problems are to be handed in. All integrals are understood in the sense of Lebesgue. You have $2 \frac{1}{2}$ hours. Good Luck!

Part A. Do each of the following two problems.

1. Let $A \subset(0,1)$ be a measurable set and $m(A)=0$. Prove that $m\{\sqrt{x}: x \in A\}=0$.
2. Let $1<p<q<r<\infty$. If $f \in L^{p}(\mathbb{R}) \cap L^{r}(\mathbb{R})$, prove that $f \in L^{q}(\mathbb{R})$.

Part B. Do any three of the following five problems.
3. Prove that the set of real-valued functions that are of bounded variation on the closed interval $[a, b]$ forms a real vector space. That is, show it is closed under addition and scalar multiplication of functions.
4. Prove that, if the outer measure $m^{*}(E)<\infty$ and if there exist intervals I_{1}, \ldots, I_{n} such that $m^{*}\left(E \triangle \bigcup_{i=1}^{n} I_{i}\right)<\infty$, then each of the intervals I_{i} is finite.
5. Let $1 \leq p<\infty$. Suppose $f_{n} \in L^{p}[0,1],\left\|f_{n}\right\|_{p} \leq 1$, and $f_{n} \rightarrow f$ a.e..
(a) Prove that $f \in L^{p}[0,1]$ and $\|f\|_{p} \leq 1$.
(b) If $1<p<\infty$ and $g \in L^{q}[0,1]$ with $\frac{1}{p}+\frac{1}{q}=1$ then $\int_{0}^{1} f_{n} g \rightarrow \int_{0}^{1} f g$ as $n \rightarrow \infty$. (Hint: Use Egoroff's theorem to identify a set E on which f_{n} converges uniformly and $m(\tilde{E})$ small. Apply Hölder's Inequality.)
6. Let $f \in L^{1}(0, \infty)$, and suppose that $\int_{0}^{\infty} x|f(x)| d x<\infty$. Prove that the function

$$
g(y)=\int_{0}^{\infty} e^{-x y} f(x) d x
$$

is differentiable at every $y \in(0, \infty)$.
7. A real-valued function f on an interval I for which there exists a constant C such that

$$
|f(x)-f(y)| \leq C|x-y|
$$

for all x and y in I is called a Lipschitz function.
(a) Prove that every Lipschitz function is absolutely continuous.
(b) Let f be absolutely continuous on an interval. Prove that f is Lipschitz if and only if f^{\prime} is essentially bounded.

