Instructions: Solve five (5) problems, including at least two (2) from Part A and at least two (2) from Part B. Start each chosen problem on a fresh sheet of paper. Write your name and the problem number on each sheet at the top. Turn in exactly 5 problems—no more and no fewer—even if the solutions are imperfect. Clip your papers together in numerical order of the problems chosen when finished. Please check your work carefully: Logical exposition matters. You have 3 hours. Good luck!

Symbols: Lebesgue measure on \mathbb{R} or \mathbb{R}^n is l or l^n respectively, (X, \mathfrak{A}, μ) is an abstract measure space, and 1_S is the indicator (or characteristic) function of the set S.

Part A: Measures & Measurable Functions

- 1. Let $f: X \to \mathbb{R}^*$ be an extended real valued measurable function on a finite measure space (X, \mathfrak{A}, μ) . Suppose that f(x) is finite for almost all x.
 - (a) Prove that for each $\epsilon > 0$ there exists a set $A \in \mathfrak{A}$, with $\mu(X \setminus A) < \epsilon$, such that f is bounded on A.
 - (b) Give an example of a measurable function $f : [0,1] \to \mathbb{R}$ for which it is impossible that f be bounded on A, if $X \setminus A$ is a μ -null set. Justify your choice.
- 2. Consider the set $I = \mathbb{R} \setminus \mathbb{Q}$ of all irrational numbers.
 - (a) Prove that I is not an F_{σ} -set. (You may assume the Baire Category theorem, but explain how its hypotheses are satisfied.)
 - (b) Prove that I is a G_{δ} -set.
 - (c) True or False: There exists a function $f : \mathbb{R} \to \mathbb{R}$ such that f is continuous at x if and only if $x \in \mathbb{Q}$. Explain briefly—full proof not required.
- 3. Let $f : \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable. Prove that f is equal almost everywhere to a *Borel* measurable function h. (Hint: The function f is the pointwise limit of a sequence $\phi_n \in \mathfrak{S}$, the set of simple functions. Modify the functions ϕ_n suitably.)
- 4. Suppose A and B are measurable subsets of \mathbb{R} , each one of strictly positive but finite measure. Prove that there exists a number $c \in \mathbb{R}$ such that

$$l((A+c)\cap B) > 0.$$

Hints: Consider the outer measure of A and B. Or, alternatively, consider the convolution $1_{-A} * 1_B(x) = \int_{\mathbb{R}} 1_{-A}(x-t) 1_B(t) dl(t).$

Part B: Integrals

- 5. Consider the sequence of functions $f_n(x) = \mathbb{1}_{[-n,n]}(x) \sin\left(\frac{\pi x}{n}\right)$, for all $x \in \mathbb{R}$.
 - (a) Determine $f(x) = \lim_{n \to \infty} f_n(x)$, the pointwise limit, and show that the sequence $(f_n)_{n \in \mathbb{N}}$ converges uniformly on compact subsets of \mathbb{R} . Does the sequence converge uniformly on \mathbb{R} ?
 - (b) Show that $\int_{\mathbb{R}} f(x) dx = \lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx.$
 - (c) Are the assumptions of Lebesgue's dominated convergence theorem satisfied? Prove your answer.
- 6. Prove that $\lim_{\alpha \to \infty} \int_{\mathbb{R}} f(t) \sin \alpha t \, dl(t) = 0$, for every Lebesgue integrable function f on \mathbb{R} . (Hint: Give a proof first for $f(x) = 1_{[a,b]}(x)$, the indicator function of an interval.)
- 7. Suppose $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is given by h(x, y) = x y. Let $E \subset \mathbb{R}$ be a *Borel* set such that l(E) = 0. Prove that the plane measure $l^2(h^{-1}(E)) = 0$. (Hint: Use Fubini's Theorem. Justify that the hypotheses of Fubini's Theorem are satisfied.)
- 8. (a) Let f be an integrable real-valued function on a measure space (X, \mathfrak{A}, μ) . If $\epsilon > 0$, prove that there exists $\delta > 0$ such that $A \in \mathfrak{A}$ and $\mu(A) < \delta$ implies

$$\left| \int_A f \, d\mu \right| < \epsilon.$$

(b) Suppose that a finite nonnegative measure λ is absolutely continuous with respect to Lebesgue measure l on \mathbb{R} : That is, $\lambda \prec l$. Define

$$F(x) = \lambda((-\infty, x)),$$

for all $x \in \mathbb{R}$. Prove that F is an absolutely continuous *function* on \mathbb{R} . (Hint: You may use the Radon-Nikodym theorem, and also the result of part (a).)