- 1. Let \mathcal{A} be a σ -algebra on a set X and let $\mu : \mathcal{A} \to [0, \infty]$ be a finitely additive measure. Assume that $\mu(X) < \infty$. Show that the following are equivalent.
 - (a) μ is countably additive.
 - (b) For all decreasing sequences $\{A_j\}$ in \mathcal{A} we have

$$\mu\left(\bigcap_{j=1}^{\infty} A_j\right) = \lim_{j \to \infty} \mu(A_j) \,.$$

(c) For all increasing sequences $\{B_j\}$ in \mathcal{A} we have

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \lim_{j \to \infty} \mu(A_j) \,.$$

- 2. Let (X, \mathcal{A}, μ) be finite measure space and let $f : X \to \overline{\mathbb{R}}$ be a non-negative measureable function. For $n \in \mathbb{N}$ let $E_n = \{x \in X \mid n-1 \leq f(x) < n\}$. Let $1 \leq p < \infty$. Show that $f \in L^p(X)$ if and only if $\sum_{n=1}^{\infty} n^p \mu(E_n) < \infty$.
- 3. Let $f_n(x) = \frac{x}{n} \mathbf{1}_{[0,n]}(x)$.
 - (a) Determine the limit $\lim_{n \to \infty} f_n$.

(b) Show that
$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n d\lambda \neq \int_{\mathbb{R}} \lim_{n \to \infty} f_n d\lambda$$

4. Find and justify the limits

(a)
$$\lim_{n \to \infty} \int_{\mathbb{R}} \mathbf{1}_{[0,n]}(x) \frac{\sin x}{1+nx^2} d\lambda(x).$$

(b)
$$\lim_{n \to \infty} \int_{\mathbb{R}} \mathbf{1}_{[0,e^n]} \frac{x}{1+nx^2} d\lambda(x).$$

5. Let (X, \mathcal{A}, μ) be a finite measure space. Let $\{f_n\}$ be a sequence of bounded measurable functions $f_n : X \to \mathbb{R}$. Assume that f_n converges uniformly to a function f. Show that $f_n \to f$ in L^1 and that $\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu$.

$$F(t) = \int_{\mathbb{R}} f(x) \cos(tx) \, d\lambda(x)$$

is differentiable and find F'(t).

7. Let
$$f \in L^1[0,1], f \ge 0$$
. Show that $\sqrt{\int_{[0,1]} f \, d\lambda(x)} \ge \int_{[0,1]} \sqrt{f(x)} \, d\lambda(x)$.

- 8. Let (X, \mathcal{A}, μ) be a σ -finite measure space. Let σ be the counting measure on \mathbb{N} . Finally let $Z = \mathbb{N} \times X$, $\mathcal{B} = \mathcal{P}(\mathbb{N}) \otimes \mathcal{A}$ and $\eta = \sigma \otimes \mu$.
 - (a) Show that $E \subset Z$ is measurable if and only if $E_n = \{x \in X \mid (n, x) \in E\}$ is measurable for each $n \in \mathbb{N}$ and in that case $\eta(E) = \sum_{n=1}^{\infty} \mu(E_n)$.
 - (b) For $f: Z \to \overline{R}$ and $n \in \mathbb{N}$ define $f_n: X \to \overline{R}$ by $f_n(x) = f(n, x)$. Then f is measurable if and only if f_n is measurable for all n.
 - (c) Let the notation be as in (2) and assume that f is measurable. Then $f \in L^1(Z, \eta)$ if and only if $f_n \in L^1(X, \mu)$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \int_X |f_n(x)| \, d\mu(x) < \infty$.
- 9. For $-\infty < a < b < \infty$ let I = [a, b] and let μ be a signed measure on I (with respect to the Borel σ -algebra). Let $f(x) = \mu([a, x])$. Then f is of bounded variation.
- 10. For $1 \leq p < \infty$ let ℓ^p be the space of sequences $\{a_n\}_{n \in \mathbb{N}}$ such that $\sum_{n=1}^{\infty} |a_n|^p < \infty$. Thus $\ell^p = L^p(\mathbb{N})$ with respect to the counting measure. For $1 \leq p \leq q < \infty$ show that $\ell^p \subset \ell^q$ and that $||\{a_n\}||_q \leq ||\{a_n\}||_p$.