Mathematics Comprehensive Examination

Core I -Analysis

January 2015
Directions: There are two parts to the exam. Solutions to at least two problems must be turned in from each part. Solutions to 5 problems are required.

Part I.

1. Let f be a Lebesgue measurable function and B be a Borel set. Show that $f^{-1}(B)$ is a Lebesgue measurable set.
2. Let f be a non-negative Lebesgue integrable function on \mathbb{R}. Show that the function

$$
F(x)=\int_{-\infty}^{x} f
$$

is continuous.
3. If f is integrable on \mathbb{R} show that $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x) \cos n x d x=0$.
4. Provide an example of a sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ of bounded measurable functions on $[0,1]$ for which $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)\right| d x=0$ but does not converge pointwise anywhere on $[0,1]$.

Part II.

1. Let g be defined by $g(0)=0$ and $g(x)=x^{2}\left(1-\cos \frac{1}{x}\right)$ for $x \neq 0$. Is g of bounded variation on $[-1,1]$? If it is prove why, otherwise demonstrate that it is not.
2. Suppose that for some $M>0$ that the function f satisfies the Lipschitz condition $|f(x)-f(y)|<M|x-y|$ for x and y in [0,10]. Suppose further that f is absolutely continuous. Is it true that $\left|f^{\prime}\right|$ is bounded? If so show why. Conversely suppose f is absolutely continuous and $\left|f^{\prime}\right|$ is bounded does f satisfy a Lipschitz condition $|f(x)-f(y)|<M|x-y|$ for some number M ?
3. Let $f(x, t)$ be defined and bounded on $Q=\{(x, t): 0 \leq x \leq 1,0 \leq y \leq 1\}$ and suppose:
(a) For each $t, f(x, t)$ is Lebesgue measurable in x.
(b) For each $(x, t) \in Q, \frac{\partial f}{\partial t}$ exists and is bounded on Q.

Show

$$
\frac{d}{d t} \int_{0}^{1} f(x, t) d x=\int_{0}^{1} \frac{\partial f(x, t)}{\partial t} d x
$$

