Mathematics Comprehensive Examination

Core I – Analysis

January 2015

Directions: There are two parts to the exam. Solutions to at least two problems must be turned in from each part. Solutions to 5 problems are required.

Part I.

- 1. Let f be a Lebesgue measurable function and B be a Borel set. Show that $f^{-1}(B)$ is a Lebesgue measurable set.
- 2. Let f be a non-negative Lebesgue integrable function on \mathbb{R} . Show that the function

$$F(x) = \int_{-\infty}^{x} f$$

is continuous.

- 3. If f is integrable on \mathbb{R} show that $\lim_{n\to\infty} \int_{-\infty}^{\infty} f(x) \cos nx \, dx = 0$.
- 4. Provide an example of a sequence $\{f_n\}_{n=1}^{\infty}$ of bounded measurable functions on [0,1] for which $\lim_{n\to\infty} \int_0^1 |f_n(x)| dx = 0$ but does not converge pointwise anywhere on [0,1].

Part II.

- 1. Let g be defined by g(0) = 0 and $g(x) = x^2(1 \cos \frac{1}{x})$ for $x \neq 0$. Is g of bounded variation on [-1, 1]? If it is prove why, otherwise demonstrate that it is not.
- 2. Suppose that for some M > 0 that the function f satisfies the Lipschitz condition |f(x) f(y)| < M|x y| for x and y in [0, 10]. Suppose further that f is absolutely continuous. Is it true that |f'| is bounded? If so show why. Conversely suppose f is absolutely continuous and |f'| is bounded does f satisfy a Lipschitz condition |f(x) f(y)| < M|x y| for some number M?
- 3. Let f(x,t) be defined and bounded on $Q = \{(x,t) : 0 \le x \le 1, 0 \le y \le 1\}$ and suppose:
 - (a) For each t, f(x, t) is Lebesgue measurable in x.
 - (b) For each $(x,t) \in Q$, $\frac{\partial f}{\partial t}$ exists and is bounded on Q.

Show

$$\frac{d}{dt}\int_0^1 f(x,t)\,dx = \int_0^1 \frac{\partial f(x,t)}{\partial t}\,dx.$$