Introduction to Applied Mathematics Qualifying Exam, August 2025

The exam is 3 hours. Each problem is worth 20 points, and you can do a maximum of five problems for a total potential score of 100 points. Do at least one problem from each category.

Recall that $\mathcal{S}(\mathbb{R}^d)$ is the Schwartz space.

Category I: Continuum Mechanics

1. (20 points)

Let a deformation map $\varphi : \mathbb{R}^{3+1} \to \mathbb{R}^3$ define a time-varying spatial coordinate $x = \varphi(X, t)$ and spatial velocity field $v(x, t) = \partial_t \varphi(X, t)$; and define $F(X, t) = \nabla^X \varphi(X, t)$.

a. Prove

$$\frac{\partial}{\partial t} \det F(X,t) = \det F(X,t) (\nabla^x \cdot v)(x,t) \bigg|_{x = \varphi(X,t)}.$$

b. Prove

$$\frac{d}{dt}v(x,t) = \frac{\partial}{\partial t}v(x,t) + (\nabla^x v(x,t)) \ v(x,t)$$

where $\frac{d}{dt}$ is understood as the partial time derivative of fields in material coordinates (X, t).

2. (20 points)

Retain the notation from Problem 1. Define an evolving body in \mathbb{R}^3 by starting with a set $B_0 \subset \mathbb{R}^3$ and putting $B_t = \varphi(B_0, t)$. The body at time t has density field $\rho(x, t)$, Cauchy stress tensor S(x, t), and body force $\rho(x, t)b(x, t)$. Assume all fields are smooth. Let the kinetic energy of $\Omega_t \subset B_t$ be defined as

$$K[\Omega_t] = \int_{\Omega_t} \frac{1}{2} \rho(x,t) \ v(x,t) \cdot v(x,t) dV_x.$$

Consider the following balance equations in spatial coordinates

$$\rho \frac{d}{dt}v = \nabla^x \cdot S + \rho b, \quad \partial_t \rho + \nabla^x \cdot (\rho v) = 0, \quad S = S^T.$$

Here $\frac{d}{dt}$ is understood as the partial derivative in time in material coordinates.

a. Prove

$$\nabla^x \cdot (S^T v) = (\nabla^x \cdot S) \cdot v + S : \nabla^x v.$$

b. Prove that for any $\Omega_t = \varphi_t(\Omega)$, $\Omega \subset B$ open, then

$$\int_{\Omega_t} \rho v \cdot \frac{d}{dt} v \ dV_x + \int_{\Omega_t} S : \operatorname{sym}(\nabla^x v) \ dV_x = \int_{\partial \Omega_t} v \cdot Sn \ dA_x + \int_{\Omega_t} \rho b \cdot v \ dV_x$$

3. (20 points)

Consider an invertible smooth map

$$\varphi:(0,1)^3\to W\subset\mathbb{R}^3$$

satisfying det $\nabla^X \varphi(X) > 0$. Consider the set of integers $\mathbb{Z}/N = \{1, 2, \dots N\}$. Let $G_N = (\mathbb{Z}/N)^3$ and define

$$P_N = \{(\frac{i_1}{N}, \frac{i_2}{N}, \frac{i_3}{N}) : (i_1, i_2, i_3) \in G_N\},\$$

a discretization of the cube. This can be considered a reference configuration. Suppose a point charge is placed at each point with charge $q_N = \frac{Q}{N^3}$ for Q constant. Then we define a distribution $\rho_N \in \mathcal{D}'(W)$ corresponding to charge density given by

$$\rho_N := \sum_{p \in P_N} q_N \ \delta_{\varphi(p)}$$

where $\langle \delta_x, \phi \rangle := \phi(x)$ for $\phi \in C_c^{\infty}(W)$. Show $\rho_N \to \langle \rho, \cdot \rangle \in \mathcal{D}'$ for some $\rho \in C(W)$. Find ρ .

Category II: Fourier Analysis

- **4.** (20 points) Consider the PDE $-\Delta u + \gamma u = f$ for $f \in \mathcal{S}(\mathbb{R}^3)$ and $\gamma > 0$ a scalar.
- **a.** Compute the solution u(x) using Fourier analysis (Show your derivation, but you do not need to prove it is a solution in this part).
 - **b.** Prove $u \in \mathcal{S}(\mathbb{R}^d)$, and conclude it is a classical solution to the PDE.
- **5.** (20 points) Suppose $f, g \in C^{\infty}_{per}([0,1]^d)$ with a Fourier series $f(x) = \sum_{n \in \mathbb{Z}^d} f_n e^{2\pi i n \cdot x}$ and $g(x) = \sum_{n \in \mathbb{Z}^d} g_n e^{2\pi i n \cdot x}$.
 - **a.** Derive a formula for the Fourier coefficients of f(x)g(x) in terms of the g_n 's and f_n 's.
 - **b.** Derive a formula for the Fourier coefficients of $-\nabla \cdot (A\nabla f)$ where $A \in \mathbb{C}^{d \times d}$.

6. (20 points)

Suppose $V(x) = \sum_{n \in \mathbb{Z}^d} V_n e^{2\pi i n \cdot x}$ is a smooth periodic vector-valued function. Suppose $u \in \mathcal{S}(\mathbb{R}^d)$. Find in terms of \hat{u} and V_n 's a formula for the Fourier transform of $f(x) = \langle V(x), \nabla u(x) \rangle$ where $\langle \cdot, \cdot \rangle$ is the standard Euclidean inner product over \mathbb{C}^d .

Category III: Weak-form PDEs & Distribution Theory

- 7. (20 points) Let $\Omega \subset \mathbb{R}^3$ be a bounded set with C^1 boundary, and recall that $\Delta = \nabla \cdot \nabla$.
 - **a.** Suppose $u, v \in C^2(\mathbb{R}^3)$. Show

$$\int_{\Omega} (u \triangle v - v \triangle u) dV = \int_{\partial \Omega} \left(u \nabla v - v \nabla u \right) \cdot n \, dS$$

where n is the outward pointing normal to the surface $\partial\Omega$.

b. For $y \in \Omega$ define $G_y(x) = \frac{1}{4\pi|x-y|}$, and note that $-\Delta G_y = \delta_y$ in the sense of distributions. For $\phi \in C_c^{\infty}(\Omega)$ a test function, δ_y is defined by $\langle \delta_y, \phi \rangle = \phi(y)$. If $v \in C^2(\mathbb{R}^3)$ satisfying $\Delta v = 0$, show

$$v(y) = \int_{\partial \Omega} (G_y(x)\nabla v(x) - v(x)\nabla G_y(x)) \cdot n \ dS_x.$$

8. (20 points)

For $y \in \mathbb{R}$, let δ_y be the distribution defined by $\langle \delta_y, \phi \rangle = \phi(y)$ where $\phi \in C_c^{\infty}(\mathbb{R})$, i.e. smooth and compactly supported. Consider the distribution

$$F_h = h^{-2}(\delta_h - 2\delta_0 + \delta_{-h}).$$

Find a limiting distribution F such that $F_h \to F$ in the sense of distributions.

9. (20 points) Consider the operator $(-\triangle + 1)^{-1}: L^2([0,1]) \to L^2([0,1])$. Show it is a compact operator, *i.e.* can be approximated in operator norm to any desired accuracy by an operator of finite rank.