Introduction to Applied Mathematics Qualifying Exam, January 2024

The exam is 3 hours. Each problem is worth 20 points, and you can do a maximum of five problems for a total potential score of 100 points. Pick at least one from each category.

Category I: Continuum Mechanics

1. Suppose we had a system with a fixed uniform rate of mass decay described as follows. Let $x=\varphi(X, t)=\varphi_{t}(X)$ be the map from material coordinates to spatial coordinates, and let $\rho(x, t)$ be the spatial mass density field and let $v(x, t)=\frac{\partial}{\partial t} \varphi(X, t)$. Assume all fields are smooth. Suppose for $\Omega \subset B$ open where B is the body and $\Omega_{t}=\varphi_{t}(\Omega)$ that we have the mass function

$$
\operatorname{mass}\left[\Omega_{t}\right]=\int_{\Omega_{t}} \rho(x, t) d V_{x} .
$$

Suppose

$$
\begin{equation*}
\frac{d}{d t} \operatorname{mass}\left[\Omega_{t}\right]=-\int_{\Omega_{t}} \gamma(x, t) \rho(x, t) d V_{x} \tag{1}
\end{equation*}
$$

for some smooth function $\gamma(x, t)>0$. From the mass relation in (1), derive the PDE in spatial coordinates

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho(x, t)+\nabla^{x} \cdot(\rho(x, t) v(x, t))=-\gamma(x, t) \rho(x, t), \quad x \in \varphi_{t}(B), t \geq 0 \tag{2}
\end{equation*}
$$

2. Consider the linear balance law in spatial coordinates for constant density

$$
\rho_{0} \frac{d}{d t} v=\nabla \cdot S+\rho_{0} b
$$

for body force field b, Cauchy stress tensor S, density $\rho_{0} \neq 0$, and velocity $v \cdot \frac{d}{d t}$ is defined as the partial derivative in time for fields in material coordinates. Assume all fields are smooth. Assume there is a smooth scalar pressure field $p(x, t)$ and I is the identity matrix such that

$$
S=-p I+\mu\left(\nabla^{x} v+\nabla^{x} v^{T}\right)
$$

and assume $\nabla^{x} \cdot v=0$, the incompressibility condition.
(a) (10 points) Derive the equation:

$$
\rho_{0}\left[\partial_{t} v+\left(\nabla^{x} v\right) v\right]=\mu \triangle^{x} v-\nabla^{x} p+\rho_{0} b
$$

(b) (10 points) Suppose $v(x, t)=\left(0,0, v_{3}\left(x_{1}, x_{2}, t\right)\right)^{T}, b=0$, and $p(x)=p_{0}>0$ for $x=\left(x_{1}, x_{2}, x_{3}\right)$. For fixed x_{3}, derive a scalar-valued PDE in x_{1}, x_{2} describing the dynamics of the fields v and p.
3. Consider the electric D field arising from a single charge living at $y \in \mathbb{R}^{3}$ defined by

$$
D_{y}(x)=k \frac{(x-y)}{|x-y|^{3}}
$$

Consider for $y \in \mathbb{R}^{3}$ the delta distribution $\delta_{y} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ defined by

$$
\left\langle\delta_{y}, \phi\right\rangle=\phi(y), \quad \phi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right) .
$$

(a) Derive in the distributional sense $\nabla \cdot D_{y}=k \delta_{y}$, and find k.
(b) If $D_{N}=\frac{1}{N} \sum_{i=1}^{N} D_{(i / N, 0,0)}$ and $\rho_{N}=\frac{k}{N} \sum_{i=1}^{N} \delta_{(i / N, 0,0)}$, derive distributions D and ρ such that $D_{N} \rightarrow D$ and $\rho_{N} \rightarrow \rho$. Prove $\nabla \cdot D=\rho$ in the distributional sense.

Category II: Fourier Analysis

4. Consider the heat equation $\frac{\partial}{\partial t} u(x, t)=\triangle u(x, t)$, and suppose $u(x, 0)=u_{0}(x)$ where $u_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. Here $u(x, t)$ is a scalar field.
a. (10 points) Find the classical solution $u(x, t)$ and verify that it is a classical solution, i.e. that u is twice continuously differentiable in x and continuously differentiable in t, and satisfies the PDE and initial data.
b. (10 points) Now suppose $u_{0} \in L^{2}\left(\mathbb{R}^{d}\right)$. Use the same formula for your solution as in part (a) and show that $u(x, t)$ satisfies classically the PDE $\frac{\partial}{\partial t} u(x, t)=\triangle u(x, t)$ for $t>0$.
5. Consider $\sigma: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ smooth with sufficiently tempered growth. Suppose we define an operator Q acting on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ by

$$
\begin{equation*}
Q \psi(x)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \sigma(x, \xi) \psi(y) e^{2 \pi i(x-y) \cdot \xi} d y d \xi \tag{3}
\end{equation*}
$$

a. (10 points) Show that if $\sigma(x, \xi)=q(x)+\xi^{T} A \xi$ for A a $d \times d$ positive definite matrix, then Q can be written as a linear differential operator. Find that linear differential operator.
b. (10 points) Suppose $Q \psi(x)=g(x) \cdot \nabla \psi(x)$ for some vector-valued continuous and bounded function $g(x)$. Find $\sigma(x, \xi)$ that satisfies Equation (3).
6. Let f be smooth and periodic, and consider the ODE

$$
-\frac{d^{2}}{d x^{2}} u(x)+\frac{2}{i} \frac{d}{d x} u(x)+u(x)=f(x)
$$

Find the solution $u(x)$ in terms of the Fourier modes $\hat{f}(n)=\int_{0}^{1} e^{2 \pi i n x} f(x) d x$, and prove u is smooth and periodic.

Category III: Weak-form PDEs \& Distribution Theory

7. Derive the distributional derivative of $\ln |x|$ in $\mathcal{D}^{\prime}(\mathbb{R})$.
8. Let $\Omega=\left\{x \in \mathbb{R}^{3}:|x| \in(1,2)\right\}$ and let $H_{0}^{1}(\Omega)$ be defined as the completion of $C_{c}^{\infty}(\Omega)$ with respect to the norm $\|\phi\|_{1}^{2}=\int|\nabla \phi|^{2} d x$. Consider the following PDE for $f \in L^{2}(\Omega)$:

$$
\begin{array}{lr}
-\triangle u(x)+|x|^{2} u(x)=f(x), & x \in \Omega \\
u(x)=0, & x \in \partial \Omega
\end{array}
$$

Formulate the PDE in the weak sense, and prove the existence of a solution $u \in H_{0}^{1}(\Omega)$.
9. a. (10 points) Prove the identity for $\Phi, \Psi \in C^{1}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$:

$$
\nabla \cdot(\Psi \times \Phi)=\Phi \cdot(\nabla \times \Psi)-(\nabla \times \Phi) \cdot \Psi
$$

b. (10 points) Consider simply connected domain $\bar{\Omega}=\overline{\Omega_{1} \cup \Omega_{2}}$, where Ω_{1} and Ω_{2} are disjoint simply connected open sets. Let Γ be the boundary between Ω_{1} and Ω_{2}. Consider the curl operator in the sense of distributions denoted $\bar{\nabla} \times$ on $C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{3}\right)$. Let F be defined such that $F(x)=F_{j}(x)$ for $x \in \Omega_{j}$ where $F_{j} \in C^{2}\left(\overline{\Omega_{2}} ; \mathbb{R}^{3}\right)$. Let $[F](x):=F_{2}(x)-F_{1}(x)$ for $x \in \Gamma$. Let $N(x)$ be the normal vector for $x \in \Gamma$ aiming into Ω_{2}. Prove

$$
\bar{\nabla} \times F=\nabla \times\left. F_{1}\right|_{\Omega_{1}}+\nabla \times\left. F_{2}\right|_{\Omega_{2}}+N \times[F] \delta_{\Gamma}
$$

For a function $G(x)$, the distribution $G \delta_{\Gamma}$ is defined such that $\left\langle G \delta_{\Gamma}, \Phi\right\rangle=\int_{\Gamma} G \cdot \Phi$.

