Instructions: Work two problems from Section A, two problems from Section B, and one problem from Section C, for a total of five problems. Start each problem on a new page, and write the problem number on the **top right** corner of the page. Make sure you order the pages correctly before submitting the exam. You have three hours. Good luck!

A. Point Set Topology (2 problems)

- A1. i. Show that if $f: X \to Y$ is a continuous bijection from a compact space X to a Hausdorff space Y, then f is a homeomorphism.
 - ii. Give an example (with justification) of topological spaces X and Y, and a continuous bijection $f: X \to Y$ that is not a homeomorphism. Which hypotheses in (i) do your examples fail?
- A2. i. Define what it means for a topological space to be *connected*.
 - ii. Using only the definition of connectedness, prove the following: Let $\{Y_n\}_{n=1}^{\infty}$ be a sequence of connected subsets of a topological space X. Suppose that $Y_n \cap Y_{n+1}$ is nonempty for all n. Show that $\bigcup_n Y_n$ is connected.
- A3. Let X and Y be topological spaces, and let $p: X \to Y$ be a closed, continuous surjection.
 - i. Prove: Given any $y \in Y$ and any open set U in X containing $p^{-1}(y)$, there is a neighborhood V of y in Y such that $p^{-1}(V) \subseteq U$.
 - ii. Prove that if Y is compact and $p^{-1}(y)$ is compact for every $y \in Y$, then X is compact.

B. Algebraic Topology (2 problems)

- B1. Let $p: \widetilde{X} \to X$ be a covering space with \widetilde{X} path-connected. Explicitly define the action of $\pi_1(X,x)$ on the fiber $p^{-1}(x)$ for a given point $x \in X$. Show that this is a group action which is transitive (i.e., given any pair of elements in $p^{-1}(x)$, there exists a group element taking one to the other).
- B2. Let X be the space obtained by gluing a disk D^2 to a torus $T^2 = S^1 \times S^1$ by identifying the boundary of D^2 with the loop $\alpha : [0,1] \to T^2$ given by $\alpha(t) = (4\pi t, 0)$ (i.e. α is a curve that wraps around the first S^1 factor twice). More precisely, if $\beta : [0,1] \to \partial D^2 = S^1$ is the boundary loop of D^2 , then X is the quotient space

$$X = (T^2 \sqcup D^2) / \alpha(t) \sim \beta(t) \ \forall t \in [0, 1].$$

State the Seifert–van Kampen Theorem and use it to find the fundamental group of X. Make sure to verify all the hypotheses of the theorem. Write your final answer as a presentation.

- B3. For each pair of spaces (X, A) in the following list, determine whether or not a retraction $r: X \to A$ exists.
 - If a retraction exists, construct it as explicitly as possible and demonstrate that it is a retraction
 - Is your construction a deformation retraction (no justification needed for this part)?
 - If a retraction does not exist, prove it.
 - (a) $X = \mathbb{R}^2 \setminus (0,0)$, the punctured plane and A = (0,1), a single point.
 - (b) $X = D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}, A = S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$
 - (c) X is \mathbb{R}^3 with the three coordinate axes removed, and A is the unit sphere in \mathbb{R}^3 with the 6 points $(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)$ removed.

C. **Mixed** (1 problem)

- C1. The suspension of a topological space X is the quotient space $\Sigma X = X \times [0,1]/\sim$ where $(x,t)\sim (y,s)$ if and only if either (x,t)=(y,s) or s=t=1 or s=t=0.
 - i. Prove that the suspension ΣX need not be simply connected.
 - ii. Prove that the suspension ΣX is simply connected if X is path connected. (Hint: Use the Seifert–van Kampen Theorem. Make sure to verify all the hypotheses of the theorem.)
- C2. Let $\mathbb{R}P^2$ denote the real projective plane.
 - i. Compute the fundamental group of $\mathbb{R}P^2$. (You may assume a result about fundamental groups of CW complexes).
 - ii. Show that every continuous map $f:\mathbb{R}P^2\to S^1$ is null-homotopic. (Hint: use covering space theory.)