Topology I. Comprehensive Exam, August, 2002.

Solve the starred problems (i.e., number 1 and 2.) Then choose two problems from the remaining four, and solve them. Total required: 4 problems. Partial credit will be given for relevant work, but do not return more than 4 problems (as indicated.) Please start each problem on a new page, and be as clear as possible. You have 2 and 1/2 hours for this test. Thanks, and good luck!

(*) 1. (a) Show that any open interval (a, b) in the real line **R** (where a < b are real numbers) is homeomorphic to the real line **R**.

(b) Show that **R** is not homeomorphic to \mathbf{R}^2 . (All the spaces involved have the usual topologies, quote without proof the appropriate basic results you use.)

(*) 2. Let X and Y be topological spaces, $f: X \to Y$ a function. Recall that "f is open" means: if U is an open set in X then f(U) is open in Y.

(a) If f is continuous, does it follow that f is open? (Proof or counterexample.)

(b) If f is open, does it follow that f is continuous? (Proof or counterexample.)

(c) Show that if $X = Y \times Z$ (a product of topological spaces, with the product topology) and f is the first projection, then f is open.

(d) Under the conditions and notation of (c), if F is closed in $X = Y \times Z$, does it follow that f(F) is closed in Y? (Proof or counterexample.)

3. Let I = [0, 1] be the closed unit interval in the real line **R**, with the usual topology, J any set, $X = I^J$ with the product topology, $f : X \to \mathbf{R}$ a continuous function. Show that for each point $c \in \mathbf{R}$ the fiber $f^{-1}(c)$, regarded as a subspace of X, is compact. [Quote without proof the appropriate standard topological results.]

4. Let $f: X \to Y$ be a quotient map of topological spaces, such that Y is connected and each set $f^{-1}(y), y \in Y$, is a connected subspace of X. Show that X is connected. [Recall that a mapping $f: X \to Y$ of topological spaces is a *quotient map* if f is onto (or surjective) and a subset U of Y is open if and only if $f^{-1}(U)$ is open.]

5. Let $f: S^1 \to \mathbf{R}$ be a continuous function (where S^1 , the "unit circle", is the set of all complex numbers of modulus one.).

(a) Show there is a point z of S^1 such that f(z) = f(-z).

(b) Show that this function f cannot be onto (or surjective). [Quote without proof the appropriate standard topological results.]

6. Recall that a metric d on a set X is called *bounded* if there is a positive real constant M such that $d(x, y) \leq M$ for any pair of points x, y in X. Show that given any metric δ on a set X, there is a bounded metric d on X that induces the same topology as δ .