Do problem 1 and any three additional problems, for a total of four. The test is intended to be 3 hours long; you will also have 30 minutes overtime, for a total of 3 and a half hours.

1. * If \(f \in K[x] \) is irreducible of degree \(d \geq 1 \), and \(L/K \) is a finite extension of degree \(n \) with \(\gcd(n, d) = 1 \), then \(f \) is irreducible in \(L[x] \).

2. (a) Let \(K \) and \(L \) be fields, and let \(\phi : K \to L \) be a map that is additive and multiplicative:
\[
\phi(a + b) = \phi(a) + \phi(b) \quad \text{and} \quad \phi(ab) = \phi(a)\phi(b),
\]
for all \(a, b \in K \). Prove that if \(\phi \) is not the identically-0 map, then \(\phi(1_K) = 1_L \).

(b) Let \(L \) be a field containing the rational numbers. Prove that the only injective ring homomorphism from \(\mathbb{Q} \) into \(L \) is the identity map (= the inclusion map \(\mathbb{Q} \hookrightarrow L \)). (You may use the fact that the rational number 1 is the multiplicative identity of \(L \); i.e., \(1_{\mathbb{Q}} = 1_L \).)

(c) Prove that the only field automorphism of \(\mathbb{R} \) is the identity. You may use the fact that a real number is nonnegative if and only if it is the square of a real number. (Hint: How would you represent a real number in terms of rational numbers?)

3. (a) Let \(F \) be a field and let \(f \in F[x] \) be a polynomial. Show that \(f \) has multiple roots (in some extension field of \(F \)) if and only if \(f \) and its derivative \(f' \) have a common root.

(b) Give an example of an irreducible \(f \) having a multiple root.

4. Let \(K \) denote the splitting field, over \(\mathbb{Q} \), of the polynomial \(x^3 - 2 \).

(a) What is the discriminant of \(x^3 - 2 \)?

(b) Determine the Galois group of \(K \) over \(\mathbb{Q} \), and all intermediate fields of this extension, and set up the Galois correspondence between intermediate fields and subgroups of the Galois group.

5. Let \(f \) be an irreducible polynomial of degree 6 over a field \(F \). Let \(K \) be an extension field of \(F \) with \([K : F] = 2 \). Prove that if \(f \) is reducible over \(K \), then it factors in \(K[x] \) into the product of two irreducible cubic polynomials.

6. Let \(k \subseteq E \subseteq K \) be fields, with \(E \) a finite extension of \(k \) and \(K \) a finite extension of \(E \). Prove that \(K \) is a finite extension of \(k \), and \([K : k] = [K : E][E : k] \).

7. Let \(p \) be a prime, and \(n \in \mathbb{N} \); write \(q = p^n \). Show that for every (positive) divisor \(d \) of \(n \), the finite field \(\mathbb{F}_q \) has exactly one subfield of order \(p^d \). Show also that for every \(d \in \mathbb{N} \) not dividing \(n \), \(\mathbb{F}_q \) has no subfield of order \(p^d \).