CORE II DIFFERENTIAL GEOMETRY EXAM

Instructions. Do four of the following five problems. You have three and a half hours.

- 1. Let M be a smooth manifold and let \widetilde{M} be a topological manifold. Suppose $\pi : \widetilde{M} \to M$ is a surjective continuous map with the property that every $p \in M$ has an open neighborhood U such that each connected component of $\pi^{-1}(U)$ is mapped homeomorphically onto U. Show that \widetilde{M} has a unique smooth structure with respect to which π is a smooth map.
- 2. Let *M* be a topological *n*-manifold and let $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$ be a smooth atlas for *M*. Suppose that for each $\alpha, \beta \in A$ there is a smooth map $\tau_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}(k, \mathbb{R})$. Suppose further that for all $\alpha, \beta, \gamma \in A$:

$$\tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p) = \tau_{\alpha\gamma}(p), \quad p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}.$$

Let T be the disjoint union of the sets $U_{\alpha} \times \mathbb{R}^k$, $\alpha \in A$. Define in T a relation \sim by setting $(p, v) \sim (p', v')$ if and only if $(p, v) \in U_{\alpha} \times \mathbb{R}^k$, $(p', v') \in U_{\beta} \times \mathbb{R}^k$, p = p' and $\tau_{\alpha\beta}(p)(v) = v'$.

- a. (i) Show that \sim is an equivalence relation on T. (ii) Let $E := T/\sim$ be the topological quotient space; *i.e.*, $X \subset E$ is open iff $\bigcup X$ is open in T. (Recall that the elements of E are equivalence classes in T.) Let $f_{\alpha} : U_{\alpha} \times \mathbb{R}^k \to E$ be the natural map. Show that f_{α} is a homeomorphism onto its image.
- b. Let W_{α} be the image of f_{α} and let $\Phi_{\alpha} := f_{\alpha}^{-1}$. Show that $\{(W_{\alpha}, \Phi_{\alpha}) \mid \alpha \in A\}$ is a smooth atlas on E. (Here, to avoid excessive notation, you are expected to identify U_{α} with $\phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^{n}$.)
- c. Show that there is a well-defined *smooth* surjection $\pi : E \to M$ such that $\pi^{-1}(p) = \mathbb{R}^k$ for each $p \in M, \pi^{-1}(U_\alpha) = W_\alpha$ and $\pi|_{W_\alpha} = \pi_\alpha \circ \Phi_\alpha$, where $\pi_\alpha : U_\alpha \times \mathbb{R}^k \to U_\alpha$ is the projection; conclude that $\pi : E \to M$ is a smooth vector bundle.
- 3. Suppose $\Phi: M \to N$ is a smooth map and $S \subset N$ is an embedded submanifold. Assume that for every $p \in \Phi^{-1}(S)$ the spaces $T_{\Phi(p)}S$ and Φ_*T_pM together span $T_{\Phi(p)}N$ (*i.e.*, Φ is *transverse* to S). Show that $\Phi^{-1}(S)$ is an embedded submanifold of M whose codimension is equal to dim N dim S. (You may use the following facts: 1) every regular level set of a smooth map is a closed embedded submanifold whose codimension is equal to the dimension of the range; 2) a subset of a smooth n-manifold is an embedded k-submanifold iff locally it is the level set of a submersion in \mathbb{R}^{n-k} .)
- 4. Show that any two points in a connected smooth manifold can be joined by a smooth curve segment. (If you use the Whitney Approximation Theorem, then state it or whatever part of it you use.)
- 5. Define a 2-form Ω on \mathbb{R}^3 by $\Omega = x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy$. a. Compute Ω is spherical coordinates (ρ, ϕ, θ) definded by

 $(x, y, z) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \theta).$

- b. Compute $d\Omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
- c. Compute the restriction $\Omega|_{S^2} = \iota^* \Omega$, using coordinates (ϕ, θ) , on the open set where these coordinates are defined.
- d. Show that $\Omega|_{S^2}$ is nowhere zero.