Core 2 Exam: Measure and Integration January 2004

Instructions: Do Problems 1-4, one of Problems 5 and 6, and one of Problems 7 and 8 (a total of six problems). You have three and a half hours. Good luck!

1. Let μ be a Borel measure on \mathbf{R}^N with $\mu(\mathbf{R}^N) = 1$. Let $f \in L^1(\mathbf{R}^N)$. Define

$$\hat{f}(t) = \int_{\mathbf{R}^N} e^{i\langle t,x\rangle} f(x) \, dx, \quad \text{and} \quad \hat{\mu}(x) = \int_{\mathbf{R}^N} e^{i\langle t,x\rangle} \, d\mu(t)$$

for every $t \in \mathbf{R}^N$. Here $\langle t, x \rangle$ is the usual inner-product of $t, x \in \mathbf{R}^N$.

- (i) Prove that $\hat{\mu}$ is a continuous function
- (ii) Prove the identity

$$\int_{\mathbf{R}^N} \hat{f} \, d\mu = \int_{\mathbf{R}^N} f(x) \hat{\mu}(x) \, dx,$$

clearly justifying all steps.

- 2. (i) Let f be a non-negative measurable function on a measure space (X, \mathcal{B}, μ) , with $\int f d\mu = 0$. Prove that f is μ -almost everywhere equal to 0.
 - (ii) Deduce, with explanations, the value of the limit

$$\lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbf{R}} f(x) e^{-x^2/(2\sigma^2)} \, dx,$$

where f is a bounded, measurable function on **R** which is continuous at 0.

- 3. Let H be a Hilbert space, M a closed subspace of H, and $x \in H$. Prove that there is a unique point $y \in M$ which is closest to x.
- 4. Let $p, q \in (1, \infty)$ be conjugate indices, and (X, \mathcal{F}, μ) a measure space. Let $f \in L^p(\mu)$. Find a function $g \in L^q(\mu)$ with $||g||_q \leq 1$ such that

$$\int fg \, d\mu = \|f\|_p$$

- 5. Let (X, \mathcal{F}, μ) be a measure space. Let \mathcal{F}' be the collection of all subsets E of X with the property that there exist $A, B \in \mathcal{F}$ and $A \subset E \subset B$ with $\mu(B A) = 0$. Show that \mathcal{F}' is a σ -algebra.
- 6. Let μ be a finite Borel measure on a locally compact Hausdorff space in which every open set is a countable union of compact sets. Prove that every Borel set is regular with respect to μ , i.e. if E is any Borel set and $\epsilon > 0$ then there is a compact set Kand an open set U with $K \subset E \subset U$ and $\mu(U - K) < \epsilon$.
- 7. Let (X, \mathcal{B}, μ) be a measure space. Let $1 \leq p < \infty$. Prove the triangle inequality

$$\|f + g\|_p \le \|f\|_p + \|g\|_p$$

for all $f, g \in L^p(\mu)$. (You may use the result of Problem 4 if you wish, along with any other standard $L^{p}-L^{q}$ inequalities.)

8. Let V be a complex vector space and $g: V \to \mathbf{R}$ a real-linear functional. Show that there is a complex-linear functional $f: V \to \mathbf{C}$ such that g is the real part of f. Now suppose the complex vector space is equipped with a norm with respect to which g is continuous. Prove that f is also continuous.