Instructions: Do Problems 1-4, one of Problems 5 and 6, and one of Problems 7 and 8 (a total of six problems). You have three and a half hours. Good luck!

- 1. Let (X, \mathcal{B}, μ) be a measure space and $f: X \to [0, \infty]$ a measurable function.
 - (i) Show that if $\int_E f \, d\mu = 0$ for all $E \in \mathcal{B}$ then f = 0 μ -almost-everywhere.
 - (ii) Show that if $\int_E f \, d\mu < \infty$ for all $E \in \mathcal{B}$ then $f < \infty \mu$ -almost-everywhere.
- 2. Let (X, \mathcal{F}) be a measurable space, and let H be the set of all measurable functions $X \to \mathbf{R}$. Show that

$$\sigma(H) = \mathcal{F},$$

where $\sigma(H)$ is the smallest σ -algebra with respect to which all functions in H are measurable.

- 3. Let f be a measurable function on a measure space (X, \mathcal{F}, μ) . Show that if $||f||_p < \infty$ and $||f||_q < \infty$, where $p, q \ge 1$, then $||f||_r < \infty$ for every $r \in (p, q)$.
- 4. Mark the following statements True or False, and provide a brief explanation for your answer:
 - (i) If (f_n) is a sequence of bounded measurable functions on a measure space (X, \mathcal{B}, μ) and $f_n(x) \to f(x)$ for all $x \in X$, where f is a bounded measurable function, then $\int f_n d\mu \to \int f d\mu$, as $n \to \infty$.
 - (ii) If f_n is a sequence of measurable functions on a measure space converging pointwise to a function f, and $1 \leq p < \infty$, and if $M \geq ||f_n||_p$ for all $n \in \{1, 2, ...\}$, then $||f||_p \leq M$.
 - (iii) If (X, \mathcal{A}) and (Y, \mathcal{B}) are measurable spaces, and $E \subset X \times Y$ is such that the projections of E on X and on Y are measurable, then E is in the product σ -algebra $\mathcal{A} \otimes \mathcal{B}$.
 - (iv) Suppose μ and ν are measures on the same measurable space (X, \mathcal{B}) , and $\mu \ll \nu$. If $f, g: X \to \mathbf{R}$ are equal to each other μ -almost-everywhere then they are equal ν -almost-everywhere.
 - (v) If H is an infinite dimensional Hilbert space then there is a subspace $M \subset H$ which is dense in H but $M \neq H$.

5. Compute the Lebesgue measure of the ellipsoidal region in \mathbf{R}^N given by

$$E = \left\{ x \in \mathbf{R}^{N} : \frac{x_{1}^{2}}{a_{1}^{2}} + \dots + \frac{x_{N}^{2}}{a_{N}^{2}} \le 1 \right\},\$$

where $a_1, ..., a_N$ are positive real numbers. Indicate clearly any standard results you use.

6. Show that if $a, b \in \mathbf{C}$, and a has positive real part, then

$$\int_{\mathbf{R}} e^{-ax^2 + 2bx} \, dx = (\pi/a)^{\frac{1}{2}} \exp(b^2/a),$$

where $(\pi/a)^{1/2}$ is the square root of π/a with positive real part.

7. Let X and Y be topological spaces with countable bases. Show that

$$\mathcal{B}_{X\times Y}=\mathcal{B}_X\otimes \mathcal{B}_Y,$$

where \mathcal{B}_S denotes the Borel σ -algebra of S, and the σ -algebra on the right is the product σ -algebra of \mathcal{B}_X with \mathcal{B}_Y .

8. Let μ be a Radon measure on a locally compact Hausdorff space X. Prove that

$$\mu(K) = \inf_{1_K \le f \in C_c(X)} \int_K f \, d\mu.$$