Core 2 Exam: Measure and Integration
August 2004

Instructions: Do Problems 1-4, one of Problems 5 and 6, and one of Problems 7 and 8 (a total of six problems). You have three and a half hours. Good luck!

1. Let \(m \) denote the Lebesgue measure on \(\mathbb{R}^n \), and \(\mathcal{F} \), the \(\sigma \)-algebra of Lebesgue measurable sets in \(\mathbb{R}^n \). Show that for any linear map \(T \) of \(\mathbb{R}^n \) to \(\mathbb{R}^n \), there exists a constant \(C_T \) such that
 \[
 m(T(A)) = C_T m(A) \quad \forall A \in \mathcal{F}
 \]
 where \(T(A) \) is the image of the set \(A \) under \(T \).

2. Let \(X \) be a compact Hausdorff space, and suppose \(\Lambda \) is a positive linear functional on \(C(X) \). Show that if \(f_n \to f \) uniformly on \(X \), then \(\Lambda f_n \to \Lambda f \). That is, a positive linear functional on \(C(X) \) is continuous in the norm topology:
 \[
 ||f||_\infty = \sup\{|f(x)| : x \in X\}.
 \]
 Give an example to show that the above result doesn’t hold in general if we only require \(X \) to be locally compact.

3. If \(\mu \) and \(\nu \) are finite measures on a \(\sigma \)-algebra \(\mathcal{F} \), show that \(\nu \) is absolutely continuous with respect to \(\mu \) if and only if for any given \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that \(\nu(A) < \epsilon \) for all \(A \) with \(\mu(A) < \delta \).

4. Let \((X, \mathcal{F}, \mu)\) be a \(\sigma \)-finite measure space such that for any \(n \geq 1 \), \(f_n \in L^p(\mu) \) where \(p \geq 1 \). Suppose \(||f_n - f||_p \to 0 \) and \(f_n \to g \) a.e. as \(n \to \infty \). Is there a relationship between \(f \) and \(g \)? Prove your claim(s), or give counter-example(s).

5. If \(f \) is a positive Lebesgue measurable function on \([0,1]\), which is larger:
 \[
 \int_0^1 f(x) \log f(x) m(dx) \quad \text{or} \quad \int_0^1 f(x) m(dx) \int_0^1 \log f(x) m(dx).
 \]
 Prove your assertion.
6. Show that if h is a bounded continuous function mapping $[0,1] \to \mathbb{R}$, show that
\[
\lim_{n \to \infty} \frac{1}{n} \log \int_0^1 e^{-nh(x)} \, dx = - \min_{x \in [0,1]} h(x).
\]

7. For $x \in \mathbb{R}$ and $t > 0$, let
\[
f(x, t) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.
\]
It is well-known that for each $t > 0$, $\int_{-\infty}^{\infty} f(x, t) \, dx = 1$. It is also known that
\[
2 \frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}.
\]
If $g(x, t) = \frac{\partial f}{\partial t}$, prove or disprove:
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, t) \, dx \, dt \neq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, t) \, dx \, dt.
\]
What is the relevance of this example to the Fubini theorem?

8. Let (a, b) be a finite non-empty interval. Show that an orthonormal sequence $\{e_n\}$ is a basis for the real Hilbert space $L^2(a, b)$ if the following holds:
\[
\sum_{n=1}^{\infty} (\int_a^x e_n(t) \, m(dt))^2 = x - a
\]
for all $x \in (a, b)$.