Core 2 Exam: Measure and Integration August 2004

Instructions: Do Problems 1-4, one of Problems 5 and 6, and one of Problems 7 and 8 (a total of six problems). You have three and a half hours. Good luck!

1. Let *m* denote the Lebesgue measure on \mathbb{R}^n , and \mathcal{F} , the σ -algebra of Lebesgue measurable sets in \mathbb{R}^n . Show that for any linear map *T* of \mathbb{R}^n to \mathbb{R}^n , there exists a constant C_T such that

$$m(T(A)) = C_T m(A) \quad \forall A \in \mathcal{F}$$

where T(A) is the image of the set A under T.

2. Let X be a compact Hausdorff space, and suppose Λ is a positive linear functional on C(X). Show that if $f_n \to f$ uniformly on X, then $\Lambda f_n \to \Lambda f$. That is, a positive linear functional on C(X) is continuous in the norm topology: $||f||_{\infty} = \sup\{|f(x)| : x \in X\}.$

Give an example to show that the above result doesn't hold in general if we only require X to be locally compact.

- 3. If μ and ν are finite measures on a σ -algebra \mathcal{F} , show that ν is absolutely continuous with respect to μ if and only if for any given $\epsilon > 0$, there exists a $\delta > 0$ such that $\nu(A) < \epsilon$ for all A with $\mu(A) < \delta$.
- 4. Let (X, \mathcal{F}, μ) be a σ -finite measure space such that for any $n \geq 1$, $f_n \in L^p(\mu)$ where $p \geq 1$. Suppose $||f_n - f||_p \to 0$ and $f_n \to g$ a.e. as $n \to \infty$. Is there a relationship between f and g? Prove your claim(s), or give counter-example(s).
- 5. If f is a positive Lebesgue measurable function on [0, 1], which is larger:

$$\int_{0}^{1} f(x) \log f(x) m(dx) \text{ or } \int_{0}^{1} f(x) m(dx) \int_{0}^{1} \log f(x) m(dx) dx$$

Prove your assertion.

6. Show that if h is a bounded continuous function mapping $[0,1] \to \mathbf{R}^1$, show that

$$\lim_{n \to \infty} \frac{1}{n} \log \int_0^1 e^{-nh(x)} dx = -\min_{x \in [0,1]} h(x).$$

7. For $x \in \mathbf{R}^1$ and t > 0, let

$$f(x,t) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.$$

It is well-known that for each t > 0, $\int_{-\infty}^{\infty} f(x, t) dx = 1$. It is also known that $2\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}$. If $g(x, t) = \frac{\partial f}{\partial t}$, prove or disprove: $\int_{-\infty}^{\infty} \int_{s}^{\infty} g(x, t) dt \, dx \neq \int_{s}^{\infty} \int_{-\infty}^{\infty} g(x, t) dx \, dt$.

What is the relevance of this example to the Fubini theorem?

8. Let (a, b) be a finite non-empty interval. Show that an orthonormal sequence $\{e_n\}$ is a basis for the real Hilbert space $L^2(a, b)$ if the following holds:

$$\sum_{n=1}^{\infty} (\int_{a}^{x} e_{n}(t)m(dt))^{2} = x - a$$

for all $x \in (a, b)$.