Comprehensive Exam for Ordinary Differential Equations

INSTRUCTIONS: Choose and do 100 points; you can do 20 more points for extra credit. You have 31/2 hours to complete the exam. ¡Buena suerte!

1. (10 points) Let $f : R \to \mathbb{R}$, where R is the square $|x| \leq a$, $|y| \leq a$, satisfy the conditions

f(x,y) < 0 if xy > 0, f(x,y) > 0 if xy < 0.

Find all solutions of the initial value problem y' = f(x, y), y(0) = 0.

2. (20 points) Let f(t) be continuous in $[1, \infty)$ be such that $\int_{1}^{\infty} t |f(t)| dt < \infty$. Prove that the equation

$$x''(t) + f(t)x(t) = 0$$
,

has a solution x_1 such that

$$\lim_{t \to \infty} x_1(t) = 1 , \lim_{t \to \infty} x_1'(t) = 0 .$$

[Hint: use succesive approximations in the equation

$$x_1(t) = 1 + \int_t^\infty (t-s) f(s) x_1(s) ds$$
.]

3. (10 points) Solve

$$\frac{dx}{x(z^2 - y^2)} = \frac{dy}{y(x^2 - z^2)} = \frac{dz}{z(y^2 - x^2)} .$$

4. (10 points) Solve

$$(x+z)\frac{\partial z}{\partial x} + (y+z)\frac{\partial z}{\partial y} + z = 0$$
.

5. (10 points) Prove that if $\mu_1(x, y)$ and $\mu_2(x, y)$ are two integration factors of the equation M(x, y) dx + N(x, y) dy = 0, and if $F = \mu_1/\mu_2$ is not constant then F is a first integral.

6. (10 points) Find a function f(x, y) such that $f(0, y) = (1 + y^2)^{-1}$ and such that

$$\int_{C} f(x,y) \left(2xy \, dx + \left(1 - x^2 \right) \, dy \right) = 0 \; ,$$

for each closed curve C.

7. (15 points) Solve the matrix differential equation x' = Ax, the vector equation $\mathbf{y}' = A\mathbf{y} + \mathbf{b}$, where

$$A = \begin{pmatrix} 0 & 1 \\ -4 & 4 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} e^t \\ 2e^{2t} \end{pmatrix}$$

- 8. (10 points each) Solve the equation for y(x):
 - a) $y'' 4y' + 4y = xe^x$,
 - **b)** $x^2y'' + xy' \alpha^2 y = x^\beta$, where α and β are constants.
- 9. (20 points)
 - (a) Let y be a non trivial solution of a linear homogeneous equation of order n in the interval (a, b). If $[c, d] \subset (a, b)$, show that y has a finite number of zeros in [c, d]. Give an example of an equation and a solution y that has infinite zeros in (a, b).
 - (b) Let $y_1(t)$ and $y_2(t)$ be a basis of the solution space of the equation

$$y''(t) + a(t)y'(t) + b(t)y(t) = 0.$$

Prove that the zeros of y_1 and of y_2 alternate: between two zeros of y_1 there is exactly one zero of y_2 .

(c) Let y be a solution of y'' + b(t) y = 0. If b(t) < 0, then y(t) has at most one zero.

10. (20 points)

- (a) Define $\cos A$ and $\sin A$ if A is an $n \times n$ matrix, i.e., $A \in \mathcal{M}_{n \times n}$.
- (b) Compute $(\cos A(t))'$ and $(\sin A(t))'$ if A(t) is differentiable and commutes with A'(t).
- (c) Find $\cos \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$ and $\sin \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$.
- (d) Prove that all solutions of the equation $x'' + A^2 x = 0$ are of the form $x = (\cos At) c_1 + (\sin At) c_2$ with c_1 and c_2 arbitrary $n \times n$ matrices. Solve the equation in case $A = \begin{pmatrix} 7\pi & 12\pi \\ -4\pi & -7\pi \end{pmatrix}$.

11. (15 points)

- (a) Let $y_1, \ldots, y_n \in C^n(a, b)$. Show that there exists a normal homogeneous differential equation of order n for which they are a basis of the solution space if and only if their Wronskian satisfies $W[y_1(t), \ldots, y_n(t)] \neq 0 \ \forall t \in (a, b)$.
- (b) Show that the equation is unique if the coefficient of $y^{(n)}$ is 1.
- (c) Find the equation in case $y_1(t) = \sec^2 t$ and $y_2(t) = \tan^2 t$.

12. (15 points)

(a) Solve the system

$$egin{aligned} &z\omega_1'\left(z
ight) = -\omega_2\left(z
ight)\,, \ &z\omega_2'\left(z
ight) = \omega_1\left(z
ight)\,. \end{aligned}$$

- (b) Find z^A if $A = \begin{pmatrix} 8 & 8 \\ -2 & 0 \end{pmatrix}$.
- 13. (15 points) The equation $z^2 y''(z) + zp(z) y'(z) + q(z) y(z) = 0$ becomes the system $z\mathbf{w}'(z) = A(z)\mathbf{w}(z)$ under the change $\mathbf{w} = \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}, \omega_1 = y, \omega_2 = zy'.$
 - (a) Find A explicitly if you start with Bessel's equation.
 - (b) Start with the equation $z^2y'' zy' + 2y = 0$, transform to a system, and solve the system.
- 14. (10 points) Find all Frobenious series solutions of the equation $z^4y'' + y = 0$.
 - 3