Do any four of the following problems. Indicate clearly which four problems you have selected. You have two and a half hours for the test. Good luck!

1. (a) Show that a metric space is normal.
 (b) Show that a compact Hausdorff space is normal.

2. Let \(\{ X_\alpha \mid \alpha \in J \} \) be a family of topological spaces, and let \(X = \prod_{\alpha \in J} X_\alpha \) with the product topology. Let \(\pi_\alpha: X \to X_\alpha \) be the projection, and let \(f: Y \to X \) be a function from a topological space \(Y \) to \(X \). Prove that \(f \) is continuous if and only if the composite \(\pi_\alpha \circ f \) is continuous for each \(\alpha \in J \).

3. Let \(X \) and \(Y \) be topological spaces and \(f: X \to Y \) a quotient mapping onto \(Y \). Let \(h: X \to Z \) be a continuous mapping to a topological space \(Z \) such that \(h(x_1) = h(x_2) \) whenever \(f(x_1) = f(x_2) \). Show that there is a unique function \(g: Y \to Z \) such that \(g \circ f = h \), and that \(g \) is continuous.

4. Let \((X, d)\) be a complete metric space and let \(\{ A_n \} \) be a nested sequence of non-empty closed subsets of \(X \) such that \(\lim_{n \to \infty} \text{diam}(A_n) = 0 \). Show that there exists \(x \in X \) such that \(\bigcap_n A_n = \{ x \} \).

5. Let \(C \) be a connected subset of a topological space \(X \). Prove or disprove:
 (a) the closure \(\overline{C} \) of \(C \) is connected;
 (b) the interior \(C^\circ \) of \(C \) is connected.

6. (a) Show that if \(f: X \to Y \) is a continuous bijection from a compact space \(X \) to a Hausdorff space \(Y \), then \(f \) is a homeomorphism.
 (b) Give an example of topological spaces \(X \) and \(Y \) and a continuous bijection \(f: X \to Y \) that is not a homeomorphism.