Матн 7510

Do **any four** of the following problems. Indicate clearly which four problems you have selected. You have two and a half hours for the test. Good luck!

- (a) Show that a metric space is normal.(b) Show that a compact Hausdorff space is normal.
- **2.** Let $\{X_{\alpha} \mid \alpha \in J\}$ be a family of topological spaces, and let $X = \prod_{\alpha \in J} X_{\alpha}$ with the product topology. Let $\pi_{\alpha} \colon X \to X_{\alpha}$ be the projection, and let $f \colon Y \to X$ be a function from a topological space Y to X. Prove that f is continuous if and only if the composite $\pi_{\alpha} \circ f$ is continuous for each $\alpha \in J$.
- **3.** Let X and Y be topological spaces and $f: X \to Y$ a quotient mapping onto Y. Let $h: X \to Z$ be a continuous mapping to a topological space Z such that $h(x_1) = h(x_2)$ whenever $f(x_1) = f(x_2)$. Show that there is a unique function $g: Y \to Z$ such that $g \circ f = h$, and that g is continuous.
- 4. Let (X, d) be a complete metric space and let $\{A_n\}$ be a nested sequence of non-empty closed subsets of X such that $\lim_{n\to\infty} \operatorname{diam}(A_n) = 0$. Show that there exists $x \in X$ such that $\bigcap_n A_n = \{x\}$.
- 5. Let C be a connected subset of a topological space X. Prove or disprove:
 - (a) the closure \overline{C} of C is connected;
 - (b) the interior C° of C is connected.
- 6. (a) Show that if $f: X \to Y$ is a continuous bijection from a compact space X to a Hausdorff space Y, then f is a homeomorphism.

(b) Give an example of topological spaces X and Y and a continuous bijection $f: X \to Y$ that is **not** a homeomorphism.