Topology I Comprehensive Exam: January, 2001

Do any four of the following five problems.

- (a) Let X be a set with distinct topologies T and T'. Recall that two topologies on X are comparable if one is a subset of the other. Show that if (X, T) and (X, T') are both compact Hausdorff, then T and T' are not comparable.
 - (b) Let X be a finite set. Show that there is exactly one Hausdorff topology on X.
- 2. Let **N** denote the natural numbers, and consider $X = [0,1]^{\mathbf{N}}$ with the product and uniform topologies. Determine whether X with these topologies is compact, connected, or normal.
- 3. (a) Show that a metric space M is complete if and only if for any decreasing sequence of nonempty closed sets $\{V_n\}$ with diam $(V_n) \to 0$ as $n \to \infty$, $\bigcap_{n=1}^{\infty} V_n$ is nonempty.
 - (b) Find a decreasing sequence of nonempty subsets $\{V_n\}$ of a complete metric space with $\operatorname{diam}(V_n) \to 0$ and empty intersection.
 - (c) Find a decreasing sequence of nonempty closed subsets $\{V_n\}$ of a complete metric space with empty intersection.
- 4. (a) Show that a compact Hausdorff space is metrizable if and only if it has a countable basis.
 - (b) Let X be a locally compact metrizable Hausdorff space with one point compactification \hat{X} . Give an example showing that \hat{X} need not be metrizable. Show that if X is second countable, then \hat{X} is metrizable.
- 5. Let $p: X \to Y$ be a closed, continuous surjective map.
 - (a) Show that if Y is connected and $p^{-1}(y)$ is connected for each $y \in Y$, then X is connected.
 - (b) Show that if Y is compact and $p^{-1}(y)$ is compact for each $y \in Y$, then X is compact.