All spaces that arise on this exam are path-connected and locally path-connected. You have 3 and 1/2 hours to complete this test.

Do any six of the following problems. Indicate clearly which problems you do.

- 1. Let X be a path-connected topological space, and let x and y be two points in X. Show that the fundamental groups $\pi(X, x)$ and $\pi(X, y)$ are isomorphic.
- **2.** State the Seifert-Van Kampen Theorem. Use this theorem to show that the *n*-sphere \mathbb{S}^n is simply connected for $n \geq 2$.
- **3.** Let $p: \widetilde{X} \to X$ be a covering space, with $p^{-1}(x)$ finite for all $x \in X$. Show that \widetilde{X} is Hausdorff if and only if X is Hausdorff.
- **4.** Let A be a subspace of X, and $x_0 \in A$. If $A \subset X$ is a retract, and $i : A \hookrightarrow X$ is the inclusion map, prove that the induced homomorphism $i_* : \pi(A, x_0) \to \pi(X, x_0)$ on fundamental groups is injective.
- **5.** Let $p: \widetilde{X} \to X$ be a covering space, and let x and y be two points in X. Show that the sets $p^{-1}(x)$ and $p^{-1}(y)$ have the same cardinality.
- 6. Determine all isomorphism classes of covering spaces of the torus $T = \mathbb{S}^1 \times \mathbb{S}^1$. Exhibit an explicit covering space in each isomorphism class.
- 7. Let $X = \mathbb{S}^1 \bigvee \mathbb{S}^1$ be a bouquet of two circles. Exhibit a two-fold covering space $p : \widetilde{X} \to X$. Choose basepoints $x_0 \in X$ and $\widetilde{x}_0 \in p^{-1}(x_0)$, and determine the homomorphism on fundamental groups $p_* : \pi(\widetilde{X}, \widetilde{x}_0) \to \pi(X, x_0)$ induced by the map p as explicitly as possible. Is the homomorphism p_* injective? Explain.
- 8. Show that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for n > 2.