Do any five of the following problems. Indicate clearly which problems you do. You have 3 and 1/2 hours for this test. Good luck!

- 1. A subset X of \mathbb{R}^n is *convex* if the line segment between any two points of X is contained in X; it is star-convex if there is some point x_0 in X such that the line segment from x_0 to any other point of X is contained in X. Give an example of a star-convex set that is not convex, and prove that any star-convex set is contractible.
- **2.** Let $f: X \to Y$ be continuous. Let x_1 and x_2 be points of X, and let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. There are induced homomorphisms $f_{1*}: \pi_1(X, x_1) \to \pi_1(Y, y_1)$ and $f_{2*}: \pi_1(X, x_2) \to \pi_1(Y, y_2)$. Show that if X is path-connected then there are isomorphisms $\phi: \pi_1(X, x_1) \to \pi_1(X, x_2)$ and $\psi: \pi_1(Y, y_1) \to \pi_1(Y, y_2)$ such that the following diagram commutes.

$$\begin{array}{ccc}
\pi_1(X, x_1) & \xrightarrow{f_{1*}} & \pi_1(Y, y_1) \\
\downarrow \phi & & \downarrow \psi \\
\pi_1(X, x_2) & \xrightarrow{f_{2*}} & \pi_1(Y, y_2)
\end{array}$$

- **3.** Let X be the subspace of \mathbb{R}^2 that is the union of two circles of radius 1 centered at (-2,0) and (2,0) and the line segment from (-1,0) to (1,0). State the Seifert-van Kampen Theorem, and use it to find the fundamental group of X.
- **4.** Complete the following definition: topological spaces X and Y are homotopy equivalent if Prove that homotopy equivalence is an equivalence relation.
- **5.** Let $p:(\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a covering map, where X is path-connected and locally path-connected, and \tilde{X} is simply-connected. (That is, \tilde{X} is the universal covering space of X). Prove that the group of covering transformations of \tilde{X} is isomorphic to the fundamental group of X.
- **6.** Let X be a path-connected and locally path-connected space.
- (a) State a necessary and sufficient condition for X to have a universal covering space.
- (b) Assume that the condition of part (a) holds, and let \tilde{X} be any path-connected covering space of X. Define what it means for \tilde{X} to be a regular covering space, and prove that if \tilde{X} is a two-fold covering space then it is regular.
- 7. Let X be the space described in problem 3. Exhibit both a regular and an irregular 3-fold covering of X.