Weil representations over abelian varieties

Luca Candelori
Louisiana State University
LSU, April 7th, 2015

Weil representations

- They are finite-dimensional complex representations of the form

$$
\rho: \operatorname{Mp}_{2 g}(\mathbb{Z}) \longrightarrow \mathrm{GL}(V)
$$

Weil representations

- They are finite-dimensional complex representations of the form

$$
\rho: \operatorname{Mp}_{2 g}(\mathbb{Z}) \longrightarrow \mathrm{GL}(V)
$$

$$
1 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Mp}_{2 g}(\mathbb{Z}) \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \rightarrow 1
$$

Weil representations

- They are finite-dimensional complex representations of the form

$$
\rho: \operatorname{Mp}_{2 g}(\mathbb{Z}) \longrightarrow \mathrm{GL}(V)
$$

$$
1 \rightarrow\{ \pm 1\} \rightarrow \operatorname{Mp}_{2 g}(\mathbb{Z}) \rightarrow \operatorname{Sp}_{2 g}(\mathbb{Z}) \rightarrow 1
$$

- They 'encode' the transformation laws of theta functions.

Example: one-variable theta functions of rank 1 lattices

Let $q=e^{2 \pi i \tau}, \tau \in \mathfrak{h}, m \in 2 \mathbb{Z}_{>0}$.

$$
\theta_{m, 0}(q)=\sum_{n \in \mathbb{Z}} q^{\frac{m}{2} n^{2}}
$$

Example: one-variable theta functions of rank 1 lattices

Let $q=e^{2 \pi i \tau}, \tau \in \mathfrak{h}, m \in 2 \mathbb{Z}_{>0}$.

$$
\theta_{m, 0}(q)=\sum_{n \in \mathbb{Z}} q^{\frac{m}{2} n^{2}}
$$

$$
\theta_{\text {null }, m}(q)=\left(\sum_{n \equiv \nu}^{\bmod _{n \in \mathbb{Z}} m} q^{n^{2} / 2 m}\right)_{\nu \in \mathbb{Z} / m \mathbb{Z}}
$$

Example: one-variable theta functions of rank 1 lattices

- Let $\gamma=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi\right) \in \operatorname{Mp}_{2}(\mathbb{Z}), \quad \phi^{2}=c \tau+d$.

Example: one-variable theta functions of rank 1 lattices

- Let $\gamma=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi\right) \in \operatorname{Mp}_{2}(\mathbb{Z}), \quad \phi^{2}=c \tau+d$.

$$
\theta_{\mathrm{null}, m}\left(\frac{a \tau+b}{c \tau+d}\right)=\phi \rho_{m}(\gamma) \theta_{\mathrm{null}, m}(\tau)
$$

Example: one-variable theta functions of rank 1 lattices

- Let $\gamma=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi\right) \in \operatorname{Mp}_{2}(\mathbb{Z}), \quad \phi^{2}=c \tau+d$.

$$
\theta_{\mathrm{null}, m}\left(\frac{a \tau+b}{c \tau+d}\right)=\phi \rho_{m}(\gamma) \theta_{\mathrm{null}, m}(\tau)
$$

where

$$
\rho_{m}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

is the Weil representation attached to the quadratic form $x \mapsto m x^{2} / 2$.

Example: one-variable theta functions of rank 1 lattices

$$
\rho_{m}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

Example: one-variable theta functions of rank 1 lattices

$$
\rho_{m}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

$$
\text { - } T=\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right), S=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sqrt{\tau}\right)
$$

Example: one-variable theta functions of rank 1 lattices

$$
\rho_{m}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

- $T=\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right), S=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sqrt{\tau}\right)$
- $\left\{\delta_{\nu}\right\} \subseteq \mathbb{C}[\mathbb{Z} / m \mathbb{Z}]$

Example: one-variable theta functions of rank 1 lattices

$$
\rho_{m}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

- $T=\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right), S=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sqrt{\tau}\right)$
- $\left\{\delta_{\nu}\right\} \subseteq \mathbb{C}[\mathbb{Z} / m \mathbb{Z}]$

$$
\begin{aligned}
\rho_{m}(T)\left(\delta_{\nu}\right) & =e^{-\pi i \nu^{2} / m} \delta_{\nu} \\
\rho_{m}(S)\left(\delta_{\nu}\right) & =\frac{\sqrt{i}}{\sqrt{m}} \sum_{\mu \in \mathbb{Z} / m \mathbb{Z}} e^{2 \pi i \nu \mu / m} \delta_{\mu}
\end{aligned}
$$

Example: one-variable theta functions of rank r lattices

Let $q=e^{2 \pi i \tau}, \tau \in \mathfrak{h},(L, Q)$ a positive-definite rank r (even) lattice.

$$
\theta_{L, 0}(q)=\sum_{\lambda \in L} q^{Q(\lambda)}
$$

Example: one-variable theta functions of rank r lattices

Let $q=e^{2 \pi i \tau}, \tau \in \mathfrak{h},(L, Q)$ a positive-definite rank r (even) lattice.

$$
\theta_{L, 0}(q)=\sum_{\lambda \in L} q^{Q(\lambda)}
$$

$$
\theta_{\mathrm{null}, L}(q)=\left(\sum_{\lambda \in L} q^{Q(\lambda+\nu)}\right)_{\nu \in L^{\prime} / L}
$$

Example: one-variable theta functions of rank r lattices

- Let $\gamma=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi\right) \in \operatorname{Mp}_{2}(\mathbb{Z}), \quad \phi^{2}=c \tau+d$.

Example: one-variable theta functions of rank r lattices

- Let $\gamma=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi\right) \in \operatorname{Mp}_{2}(\mathbb{Z}), \quad \phi^{2}=c \tau+d$.

$$
\theta_{\mathrm{null}, L}\left(\frac{a \tau+b}{c \tau+d}\right)=\phi^{r} \rho_{L}(\gamma) \theta_{\mathrm{null}, L}(\tau)
$$

Example: one-variable theta functions of rank r lattices

- Let $\gamma=\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \phi\right) \in \operatorname{Mp}_{2}(\mathbb{Z}), \quad \phi^{2}=c \tau+d$.

$$
\theta_{\mathrm{null}, L}\left(\frac{a \tau+b}{c \tau+d}\right)=\phi^{r} \rho_{L}(\gamma) \theta_{\mathrm{null}, L}(\tau)
$$

where

$$
\rho_{L}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}\left(\mathbb{C}\left[L^{\prime} / L\right]\right)
$$

is the Weil representation attached to the lattice (L, Q).

Example: one-variable theta functions of rank r lattices

$$
\rho_{L}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}\left(\mathbb{C}\left[\mathrm{~L}^{\prime} / L\right]\right)
$$

Example: one-variable theta functions of rank r lattices

$$
\rho_{L}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}\left(\mathbb{C}\left[L^{\prime} / L\right]\right)
$$

- $T=\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right), S=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sqrt{\tau}\right)$

Example: one-variable theta functions of rank r lattices

$$
\rho_{L}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}\left(\mathbb{C}\left[L^{\prime} / L\right]\right)
$$

- $T=\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right), S=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sqrt{\tau}\right)$
- $\left\{\delta_{\nu}\right\} \subseteq \mathbb{C}\left[L^{\prime} / L\right]$

Example: one-variable theta functions of rank r lattices

$$
\rho_{L}: \mathrm{Mp}_{2}(\mathbb{Z}) \rightarrow \mathrm{GL}\left(\mathbb{C}\left[L^{\prime} / L\right]\right)
$$

- $T=\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), 1\right), S=\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sqrt{\tau}\right)$
- $\left\{\delta_{\nu}\right\} \subseteq \mathbb{C}\left[L^{\prime} / L\right]$

$$
\begin{aligned}
\rho_{m}(T)\left(\delta_{\nu}\right) & =e^{-2 \pi i Q(\nu)} \delta_{\nu} \\
\rho_{m}(S)\left(\delta_{\nu}\right) & =\frac{\sqrt{i}}{\sqrt{\left|L^{\prime} / L\right|}} \sum_{\mu \in L^{\prime} / L} e^{2 \pi i B(\nu, \mu)} \delta_{\mu}
\end{aligned}
$$

Further examples

- Let $\left(\mathbb{C}^{g} / \Lambda, H\right)$ be a complex torus with a symmetric principal polarization.

Further examples

- Let $\left(\mathbb{C}^{g} / \Lambda, H\right)$ be a complex torus with a symmetric principal polarization.
- Let

$$
\theta_{H, 0}=\sum_{\lambda \in \mathbb{Z}^{\boldsymbol{g}}} e^{2 \pi i\langle\lambda, T \lambda\rangle}
$$

where $T \in \mathfrak{h}_{g}$.

Further examples

- Let $\left(\mathbb{C}^{g} / \Lambda, H\right)$ be a complex torus with a symmetric principal polarization.
- Let

$$
\theta_{H, 0}=\sum_{\lambda \in \mathbb{Z}^{g}} e^{2 \pi i\langle\lambda, T \lambda\rangle}
$$

where $T \in \mathfrak{h}_{g}$.

- For $k \in 2 \mathbb{Z}_{>0}$, let

$$
\theta_{\text {null }, H^{k}}=\left\{\sum_{\lambda \in \mathbb{Z}^{g}} e^{2 \pi i\left\langle\lambda+c_{1}, T\left(\lambda+c_{1}\right)\right\rangle}\right\}_{c_{1} \in \frac{1}{k} \mathbb{Z}^{g} / \mathbb{Z}^{g}}
$$

Geometric interpretations

- André Weil, sur certains groupes d'opérateurs unitaires (1964):

A force d'habitude, le fait que les séries thêta définissent des fonctions modulaires a presque cessé de nous étonner. Mais l'apparition du groupe symplectique comme un deus ex machina dans les célèbres travaux de Siegel sur les formes quadratiques n'a rien perdu encore de son caractère mystérieux.

Geometric interpretations

- André Weil, sur certains groupes d'opérateurs unitaires (1964):

A force d'habitude, le fait que les séries thêta définissent des fonctions modulaires a presque cessé de nous étonner. Mais l'apparition du groupe symplectique comme un deus ex machina dans les célèbres travaux de Siegel sur les formes quadratiques n'a rien perdu encore de son caractère mystérieux.

Question

Can we construct Weil representations geometrically?

Heisenberg groups

- Let S be a noetherian scheme and let $H \rightarrow S$ be a commutative finite flat group scheme.

Heisenberg groups

- Let S be a noetherian scheme and let $H \rightarrow S$ be a commutative finite flat group scheme.

$$
\mathscr{G}_{H}:=\mathbb{G}_{m} \times H \times \widehat{H},
$$

with group law given by

$$
\left(\lambda_{1}, x_{1}, y_{1}\right) \cdot\left(\lambda_{2}, x_{2}, y_{2}\right)=\left(\lambda_{1} \lambda_{2}\left\langle x_{2}, y_{1}\right\rangle, x_{1}+x_{2}, y_{1}+y_{2}\right)
$$

The Schrödinger representation

Lift H to a subgroup of \mathscr{G}_{H} :

$$
\begin{aligned}
& H \mathscr{G}_{H} \\
& x \longmapsto(1, x, 0)
\end{aligned}
$$

Definition

The Schrödinger representation of \mathscr{G}_{H} is the \mathcal{O}_{S}-module \mathcal{S}_{H} of functions $f: \mathscr{G}_{H} \rightarrow \mathcal{O}_{S}$ such that, for all $g \in \mathscr{G}_{H}$:
(i) $f(\lambda g)=\lambda f(g)$, for all $\lambda \in \mathbb{G}_{m}$,
(ii) $f(h g)=f(g)$, for all $h \in H \subseteq \mathscr{G}_{H}$, together with \mathscr{G}_{H}-action $\rho: \mathscr{G}_{H} \longrightarrow \underline{\mathrm{GL}}\left(\mathcal{S}_{H}\right)$ given by

$$
\rho\left(g^{\prime}\right) f(g):=f\left(g g^{\prime}\right)
$$

Functoriality of Schrödinger representations

Functoriality of Schrödinger representations

Theorem (Stone-von Neumann)

There is an invertible \mathcal{O}_{S}-module \mathcal{I} with trivial \mathscr{G}_{H}-action and a \mathscr{G}_{H}-module isomorphism

$$
\mathcal{S}_{\boldsymbol{H}} \otimes \mathcal{I} \simeq \mathcal{S}_{H^{\prime}}
$$

intertwining ρ and $\rho^{\prime} \circ \sigma$.

Schrödinger algebras

Definition

Let \mathscr{G}_{H} be a Heisenberg group. The Schrödinger algebra of \mathscr{G}_{H} is the $\mathscr{G}_{H} \times \mathscr{G}_{H}$-module given by

$$
\mathcal{A}_{H}:=\operatorname{End}_{\mathcal{O}_{S}}\left(\mathcal{S}_{H}\right)
$$

Schrödinger algebras

Definition

Let \mathscr{G}_{H} be a Heisenberg group. The Schrödinger algebra of \mathscr{G}_{H} is the $\mathscr{G}_{H} \times \mathscr{G}_{H}$-module given by

$$
\mathcal{A}_{H}:=\operatorname{End}_{\mathcal{O}_{S}}\left(\mathcal{S}_{H}\right)
$$

Theorem

Let $\sigma: \mathscr{G}_{H} \rightarrow \mathscr{G}_{H^{\prime}}$ be a morphism of Heisenberg groups. Then σ induces a canonical \mathcal{O}_{S}-algebra isomorphism

$$
\sigma_{\mathcal{A}}: \mathcal{A}_{H} \xrightarrow{\simeq} \mathcal{A}_{H^{\prime}},
$$

intertwining the $\mathscr{G}_{H} \times \mathscr{G}_{H}$-actions.

Canonical involutions

Any Heisenberg group is equipped with a canonical order 2 automorphism:

$$
\begin{aligned}
\iota: \mathscr{G}_{H} & \longrightarrow \mathscr{G}_{H} \\
(\lambda, x, y) & \longmapsto\left(\lambda^{-1},-x, y\right) .
\end{aligned}
$$

Canonical involutions

Any Heisenberg group is equipped with a canonical order 2 automorphism:

$$
\begin{aligned}
\iota: \mathscr{G}_{H} & \longrightarrow \mathscr{G}_{H} \\
(\lambda, x, y) & \longmapsto\left(\lambda^{-1},-x, y\right) .
\end{aligned}
$$

Theorem

There is a canonical \mathscr{G}_{H}-module isomorphism

$$
\mathcal{S}_{H}^{\iota} \simeq \mathcal{S}_{H}^{\vee}
$$

intertwining $\rho \circ \iota$ and ρ^{\vee}.

Refining stone-von Neumann

Suppose

commutes with the involutions (σ is symmetric):

Theorem (Refined Stone-von Neumann)

There is an invertible \mathcal{O}_{S}-module \mathcal{I} with trivial \mathscr{G}_{H}-action and a \mathscr{G}_{H}-module isomorphism

$$
\mathcal{S}_{H} \otimes \mathcal{I} \simeq \mathcal{S}_{H^{\prime}}
$$

intertwining ρ and $\rho^{\prime} \circ \sigma$. Moreover, $\mathcal{I}^{2} \simeq \mathcal{O}_{S}$.

Theorem (Refined Stone-von Neumann)

There is an invertible \mathcal{O}_{S}-module \mathcal{I} with trivial \mathscr{G}_{H}-action and a \mathscr{G}_{H}-module isomorphism

$$
\mathcal{S}_{H} \otimes \mathcal{I} \simeq \mathcal{S}_{H^{\prime}}
$$

intertwining ρ and $\rho^{\prime} \circ \sigma$. Moreover, $\mathcal{I}^{2} \simeq \mathcal{O}_{S}$.

Sketch.

$$
\mathcal{S}_{H}^{\iota} \otimes \mathcal{I} \simeq \mathcal{S}_{H^{\prime}}^{\iota} \simeq \mathcal{S}_{H^{\prime}}^{\vee} \simeq \mathcal{S}_{H}^{\vee} \otimes \mathcal{I}^{-1} \simeq \mathcal{S}_{H}^{\iota} \otimes \mathcal{I}^{-1}
$$

and take H -invariants.

Azumaya algebras point of view

- To an Heisenberg group \mathscr{G}_{H}, we have functorially attached a (trivial) Azumaya algebra

$$
\mathcal{A}_{H}: S \longrightarrow B \mathrm{PGL}
$$

- If morphisms $\mathscr{G}_{H} \rightarrow \mathscr{G}_{H^{\prime}}$ are involution-preserving, then we have functorially attached a 'order 2 Azumaya algebra':

$$
\mathcal{A}_{H}: S \longrightarrow B \mathrm{GL} /\{ \pm 1\}
$$

Heisenberg groups over abelian schemes

- Let $A \rightarrow S$ be an abelian scheme and let \mathcal{L} a (normalized) non-degenerate line bundle over it.

Heisenberg groups over abelian schemes

- Let $A \rightarrow S$ be an abelian scheme and let \mathcal{L} a (normalized) non-degenerate line bundle over it.
- Mumford's theta group:

$$
1 \rightarrow \mathbb{G}_{m} \rightarrow \mathscr{G}(\mathcal{L}) \rightarrow K(\mathcal{L}) \rightarrow 1
$$

Heisenberg groups over abelian schemes

- Let $A \rightarrow S$ be an abelian scheme and let \mathcal{L} a (normalized) non-degenerate line bundle over it.
- Mumford's theta group:

$$
1 \rightarrow \mathbb{G}_{m} \rightarrow \mathscr{G}(\mathcal{L}) \rightarrow K(\mathcal{L}) \rightarrow 1
$$

- Locally (for the étale topology)

$$
\mathscr{G}(\mathcal{L}) \simeq \mathscr{G}_{H}
$$

where

$$
K(\mathcal{L}) \simeq H \times \widehat{H}
$$

Glueing Schrödinger algebras

Definition

The theta algebra $\mathcal{A}_{\mathcal{L}}$ is the \mathcal{O}_{S}-algebra with $\mathscr{G}(\mathcal{L})$-action obtained by glueing the Schrödinger algebras

$$
\mathcal{A}_{H}=\operatorname{End}_{\mathcal{O}_{S}}\left(\mathcal{S}_{H}\right)
$$

given locally over S.

Glueing Schrödinger algebras

Definition

The theta algebra $\mathcal{A}_{\mathcal{L}}$ is the \mathcal{O}_{S}-algebra with $\mathscr{G}(\mathcal{L})$-action obtained by glueing the Schrödinger algebras

$$
\mathcal{A}_{H}=\operatorname{End}_{\mathcal{O}_{S}}\left(\mathcal{S}_{H}\right)
$$

given locally over S.

Theorem

Let \mathcal{L} be totally symmetric. Then $\mathcal{A}_{\mathcal{L}}^{\otimes 2}$ is the endomorphism algebra of a vector bundle over S.

Glueing Schrödinger algebras

Definition

The theta algebra $\mathcal{A}_{\mathcal{L}}$ is the \mathcal{O}_{S}-algebra with $\mathscr{G}(\mathcal{L})$-action obtained by glueing the Schrödinger algebras

$$
\mathcal{A}_{H}=\operatorname{End}_{\mathcal{O}_{S}}\left(\mathcal{S}_{H}\right)
$$

given locally over S.

Theorem

Let \mathcal{L} be totally symmetric. Then $\mathcal{A}_{\mathcal{L}}^{\otimes 2}$ is the endomorphism algebra of a vector bundle over S.

Proof.

$$
\mathcal{A}_{\mathcal{L}}^{\otimes 2} \simeq \operatorname{End}_{\mathcal{O}_{S}}\left(\mathcal{S}_{H}^{\otimes 2}\right)
$$

Azumaya algebras point of view

Definition

An Azumaya algebra is an \mathcal{O}_{S}-algebras that is locally isomorphic to endomorphism algebras of vector bundles.

- Equivalently: PGL-torsors over S.

Azumaya algebras point of view

Definition

An Azumaya algebra is an \mathcal{O}_{S}-algebras that is locally isomorphic to endomorphism algebras of vector bundles.

- Equivalently: PGL-torsors over S.
- $\operatorname{Br}(S)=$ Brauer group of Azumaya algebras modulo

$$
\mathcal{A}_{1} \otimes \operatorname{End}_{\mathcal{O}_{s}}\left(\mathcal{V}_{1}\right) \sim \mathcal{A}_{2} \otimes \operatorname{End}_{\mathcal{O}_{s}}\left(\mathcal{V}_{2}\right)
$$

Azumaya algebras point of view

Definition

An Azumaya algebra is an \mathcal{O}_{S}-algebras that is locally isomorphic to endomorphism algebras of vector bundles.

- Equivalently: PGL-torsors over S.
- $\operatorname{Br}(S)=$ Brauer group of Azumaya algebras modulo

$$
\mathcal{A}_{1} \otimes \operatorname{End}_{\mathcal{O}_{s}}\left(\mathcal{V}_{1}\right) \sim \mathcal{A}_{2} \otimes \operatorname{End}_{\mathcal{O}_{s}}\left(\mathcal{V}_{2}\right)
$$

- Azumaya algebra of 'order n ': $\mathcal{A}_{1}^{\otimes n} \simeq \operatorname{End}_{\mathcal{O}_{S}}(\mathcal{V})$.

Theta algebras of order 2

- To a pair $(\mathcal{A} \rightarrow S, \mathcal{L})$ we have canonically attached an Azumaya algebra

$$
\mathcal{A}_{\mathcal{L}}: S \longrightarrow B \mathrm{PGL}
$$

(possibly nontrivial in $\operatorname{Br}(S)$).

Theta algebras of order 2

- To a pair $(\mathcal{A} \rightarrow S, \mathcal{L})$ we have canonically attached an Azumaya algebra

$$
\mathcal{A}_{\mathcal{L}}: S \longrightarrow B \mathrm{PGL}
$$

(possibly nontrivial in $\operatorname{Br}(S)$).

- If \mathcal{L} is totally symmetric,

$$
\mathcal{A}_{\mathcal{L}}: S \longrightarrow B \mathrm{GL} /\{ \pm 1\}
$$

i.e. $\mathcal{A}_{\mathcal{L}}$ is of order 2.

Torsor-lifting

Question

Can we lift a GL/\{ $\pm 1\}$-torsor to a GL-torsor (i.e. a vector bundle)?

Torsor-lifting

Question

Can we lift a GL/\{ $\pm 1\}$-torsor to a GL-torsor (i.e. a vector bundle)?
Given $(\mathcal{A}, \mathcal{L}), \mathcal{L}$ totally symmetric:

$$
\begin{aligned}
S_{\mathcal{L}}:= & \\
& \times_{\mathcal{A}_{\mathcal{L}}} B \mathrm{GL} \xrightarrow{\mathcal{W}_{\mathcal{L}}} B \mathrm{GGL} \\
& \stackrel{\downarrow}{ } \quad \underset{\mathcal{A}_{\mathcal{L}}}{ } \text { BGL/\{土1\}}
\end{aligned}
$$

Torsor-lifting

Question

Can we lift a GL/\{ $\pm 1\}$-torsor to a GL-torsor (i.e. a vector bundle)?
Given $(\mathcal{A}, \mathcal{L}), \mathcal{L}$ totally symmetric:

$$
\begin{aligned}
& S_{\mathcal{L}}:=S \times_{\mathcal{A}_{\mathcal{L}}} B \mathrm{GL} \xrightarrow{\mathcal{W}_{\mathcal{L}}} B \mathrm{GL}
\end{aligned}
$$

Definition

The vector bundle $\mathcal{W}_{\mathcal{L}}$ over the $\{ \pm 1\}$-gerbe $S_{\mathcal{L}}$ is the Weil bundle attached to \mathcal{L}.

The universal case

- Let $\mathcal{A} \rightarrow \mathscr{A}_{g}$ be the universal family of ppav of dimension g.

The universal case

- Let $\mathcal{A} \rightarrow \mathscr{A}_{g}$ be the universal family of ppav of dimension g.
- Let \mathcal{L} be a totally symmetric, normalized, non-degenerate line bundle over \mathcal{A} of degree d.

The universal case

- Let $\mathcal{A} \rightarrow \mathscr{A}_{g}$ be the universal family of ppav of dimension g.
- Let \mathcal{L} be a totally symmetric, normalized, non-degenerate line bundle over \mathcal{A} of degree d.

$$
\mathscr{W}_{\mathcal{L}}:=\mathscr{A}_{g} \times \times_{\mathcal{A}_{\mathcal{L}}} B \mathrm{GL}_{d} \xrightarrow{\mathcal{W}_{\mathcal{L}}} B \operatorname{\mathscr {A}}_{g} \xrightarrow[\mathcal{A}_{\mathcal{L}}]{\downarrow} B \mathrm{GL}_{d} /\{ \pm 1\}
$$

The universal case

- Let $\mathcal{A} \rightarrow \mathscr{A}_{g}$ be the universal family of ppav of dimension g.
- Let \mathcal{L} be a totally symmetric, normalized, non-degenerate line bundle over \mathcal{A} of degree d.

$$
\mathscr{W}_{\mathcal{L}}:=\mathscr{A}_{g} \times \times_{\mathcal{A}_{\mathcal{L}}} B \mathrm{GL}_{d} \xrightarrow{\mathcal{W}_{\mathcal{L}}} B \operatorname{\mathscr {A}}_{g} \xrightarrow[\mathcal{A}_{\mathcal{L}}]{\downarrow} B \mathrm{GL}_{d} /\{ \pm 1\}
$$

Analytic picture

- $\mathscr{W}_{\mathcal{L}} \simeq \operatorname{Mp}_{2 g}(\mathbb{Z}) \backslash \mathfrak{h}_{g}$ (orbifold quotient).

Analytic picture

- $\mathscr{W}_{\mathcal{L}} \simeq \operatorname{Mp}_{2 g}(\mathbb{Z}) \backslash \mathfrak{h}_{g}$ (orbifold quotient).
- $\mathcal{W}_{\mathcal{L}}=$ local system attached to a representation

$$
\rho_{\mathcal{L}}: \operatorname{Mp}_{2 g}(\mathbb{Z}) \longrightarrow \mathrm{GL}(V)
$$

Analytic picture

- $\mathscr{W}_{\mathcal{L}} \simeq \operatorname{Mp}_{2 g}(\mathbb{Z}) \backslash \mathfrak{h}_{g}$ (orbifold quotient).
- $\mathcal{W}_{\mathcal{L}}=$ local system attached to a representation

$$
\rho_{\mathcal{L}}: \operatorname{Mp}_{2 g}(\mathbb{Z}) \longrightarrow \mathrm{GL}(V)
$$

Examples

- E.g. $g=1, \mathcal{E} \rightarrow \mathscr{M}_{1}, m \in 2 \mathbb{Z}_{>0}, \mathcal{L}=\mathcal{O}_{\mathcal{E}}\left(m 0_{\mathcal{E}}\right)$ (+ normalization),

$$
\rho_{\mathcal{L}}=\rho_{m}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

Examples

- E.g. $g=1, \mathcal{E} \rightarrow \mathscr{M}_{1}, m \in 2 \mathbb{Z}_{>0}, \mathcal{L}=\mathcal{O}_{\mathcal{E}}\left(m 0_{\mathcal{E}}\right)$ (+ normalization),

$$
\rho_{\mathcal{L}}=\rho_{m}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

- E.g. $g=r,(L, Q)$ any (even) lattice of rank r,

Examples

- E.g. $g=1, \mathcal{E} \rightarrow \mathscr{M}_{1}, m \in 2 \mathbb{Z}_{>0}, \mathcal{L}=\mathcal{O}_{\mathcal{E}}\left(m 0_{\mathcal{E}}\right)$ (+ normalization),

$$
\rho_{\mathcal{L}}=\rho_{m}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

- E.g. $g=r,(L, Q)$ any (even) lattice of rank $r, \mathcal{A}=\mathcal{E}^{r} \rightarrow \mathscr{M}_{1}$,

Examples

- E.g. $g=1, \mathcal{E} \rightarrow \mathscr{M}_{1}, m \in 2 \mathbb{Z}_{>0}, \mathcal{L}=\mathcal{O}_{\mathcal{E}}\left(m 0_{\mathcal{E}}\right)$ (+ normalization),

$$
\rho_{\mathcal{L}}=\rho_{m}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

- E.g. $g=r,(L, Q)$ any (even) lattice of rank $r, \mathcal{A}=\mathcal{E}^{r} \rightarrow \mathscr{M}_{1}$, $\mathcal{L}=\mathcal{L}_{Q}$

Examples

- E.g. $g=1, \mathcal{E} \rightarrow \mathscr{M}_{1}, m \in 2 \mathbb{Z}_{>0}, \mathcal{L}=\mathcal{O}_{\mathcal{E}}\left(m 0_{\mathcal{E}}\right)$ (+ normalization),

$$
\rho_{\mathcal{L}}=\rho_{m}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

- E.g. $g=r,(L, Q)$ any (even) lattice of rank $r, \mathcal{A}=\mathcal{E}^{r} \rightarrow \mathscr{M}_{1}$, $\mathcal{L}=\mathcal{L}_{Q}$

$$
\rho_{\mathcal{L}}=\rho_{L}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}\left(\mathbb{C}\left[L^{\prime} / L\right]\right)
$$

Examples

- E.g. $g=1, \mathcal{E} \rightarrow \mathscr{M}_{1}, m \in 2 \mathbb{Z}_{>0}, \mathcal{L}=\mathcal{O}_{\mathcal{E}}\left(m 0_{\mathcal{E}}\right)$ (+ normalization),

$$
\rho_{\mathcal{L}}=\rho_{m}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}(\mathbb{C}[\mathbb{Z} / m \mathbb{Z}])
$$

- E.g. $g=r,(L, Q)$ any (even) lattice of rank $r, \mathcal{A}=\mathcal{E}^{r} \rightarrow \mathscr{M}_{1}$, $\mathcal{L}=\mathcal{L}_{Q}$

$$
\rho_{\mathcal{L}}=\rho_{L}: \operatorname{Mp}_{2}(\mathbb{Z}) \longrightarrow \mathrm{GL}\left(\mathbb{C}\left[L^{\prime} / L\right]\right)
$$

- E.g. $\mathcal{L}=H^{k}$, even powers of a symmetric principal polarization.

Mumford's algebraic theta functions

- On the equations defining abelian varieties I,II,III (Mumford, Invent. math. 1966-67)

Mumford's algebraic theta functions

- On the equations defining abelian varieties I,II,III (Mumford, Invent. math. 1966-67)
- Mumford writes:

My aim is to set up a purely algebraic theory of theta-functions.

Mumford's algebraic theta functions

- On the equations defining abelian varieties I,II,III (Mumford, Invent. math. 1966-67)
- Mumford writes:

My aim is to set up a purely algebraic theory of theta-functions.

There are several interesting topics which I have not gone into in this paper, but which can be investigated in the same spirit: for example, [...] a discussion of the transformation theory of theta-functions.

The Ideal Theorem

Let \mathcal{L} be a normalized, totally symmetric, relatively ample line bundle over an abelian scheme (stack) $\pi: \mathcal{A} \rightarrow S$.

The Ideal Theorem

Let \mathcal{L} be a normalized, totally symmetric, relatively ample line bundle over an abelian scheme (stack) $\pi: \mathcal{A} \rightarrow S$.

Theorem (Ideal Theorem)

There is a canonical isomorphism

$$
\mathcal{W}_{\mathcal{L}}^{\vee} \otimes \underline{\omega}_{\mathcal{L}}^{-1 / 2} \simeq \pi_{*} \mathcal{L}
$$

of locally free modules of rank d over S, where $\underline{\omega}_{\mathcal{L}}^{-1 / 2}$ is a square root of the inverse of the Hodge bundle

$$
\underline{\omega}:=\operatorname{det}\left(\pi_{*} \Omega_{A / S}^{1}\right)
$$

Mumford's algebraic theta functions

- Normalization:

$$
e^{*} \mathcal{L} \simeq \mathcal{O}_{s}
$$

Mumford's algebraic theta functions

- Normalization:

$$
e^{*} \mathcal{L} \simeq \mathcal{O}_{S}
$$

- Gives a map

$$
\theta_{\text {null }, \mathcal{L}}: \pi_{*} \mathcal{L} \rightarrow \mathcal{O}_{S}
$$

Mumford's algebraic theta functions

- Normalization:

$$
e^{*} \mathcal{L} \simeq \mathcal{O}_{S}
$$

- Gives a map

$$
\theta_{\text {null }, \mathcal{L}}: \pi_{*} \mathcal{L} \rightarrow \mathcal{O}_{S}
$$

- Get a section $\theta_{\text {null }, \mathcal{L}}$ of $\left(\pi_{*} \mathcal{L}\right)^{\vee}$.

Mumford's algebraic theta functions

- Normalization:

$$
e^{*} \mathcal{L} \simeq \mathcal{O}_{S}
$$

- Gives a map

$$
\theta_{\text {null }, \mathcal{L}}: \pi_{*} \mathcal{L} \rightarrow \mathcal{O}_{S}
$$

- Get a section $\theta_{\text {null }, \mathcal{L}}$ of $\left(\pi_{*} \mathcal{L}\right)^{\vee}$.
- (Dual of the) Ideal Theorem:

Transformation Laws of Theta Functions

$$
\mathcal{W}_{\mathcal{L}} \otimes \underline{\omega}_{\mathcal{L}}^{1 / 2} \simeq\left(\pi_{*} \mathcal{L}\right)^{\vee}
$$

The Ideal Theorem, extended

Let \mathcal{L} be a normalized, totally symmetric, non-degenerate line bundle over an abelian scheme (stack) $\pi: \mathcal{A} \rightarrow S$.

The Ideal Theorem, extended

Let \mathcal{L} be a normalized, totally symmetric, non-degenerate line bundle over an abelian scheme (stack) $\pi: \mathcal{A} \rightarrow S$.

Theorem (Ideal Theorem, extended)

There is a canonical isomorphism

$$
\mathcal{W}_{\mathcal{L}}^{\vee} \otimes \underline{\omega}_{\mathcal{L}}^{-1 / 2} \simeq R^{i(\mathcal{L})} \pi_{*} \mathcal{L}
$$

of locally free modules of rank d over S, where $i(\mathcal{L})$ is the index of the line bundle.

Ideal Theorem 'proof'

- By SVN:

$$
\mathcal{W}_{\mathcal{L}}^{\vee} \otimes \mathcal{I}_{1} \simeq R^{i(\mathcal{L})} \pi_{*} \mathcal{L}
$$

Ideal Theorem 'proof'

- By SVN:

$$
\begin{gathered}
\mathcal{W}_{\mathcal{L}}^{\vee} \otimes \mathcal{I}_{1} \simeq R^{i(\mathcal{L})} \pi_{*} \mathcal{L} \\
\mathcal{W}_{\mathcal{L}} \otimes \mathcal{I}_{-1} \simeq R^{g-i(\mathcal{L})} \pi_{*} \mathcal{L}^{-1}
\end{gathered}
$$

Ideal Theorem 'proof'

- By SVN:

$$
\begin{gathered}
\mathcal{W}_{\mathcal{L}}^{\vee} \otimes \mathcal{I}_{1} \simeq R^{i(\mathcal{L})} \pi_{*} \mathcal{L} \\
\mathcal{W}_{\mathcal{L}} \otimes \mathcal{I}_{-1} \simeq R^{g-i(\mathcal{L})} \pi_{*} \mathcal{L}^{-1}
\end{gathered}
$$

- Prove that $\mathcal{I}_{1}=\mathcal{I}_{-1}=\mathcal{I}$.

Ideal Theorem 'proof'

- By SVN:

$$
\begin{gathered}
\mathcal{W}_{\mathcal{L}}^{\vee} \otimes \mathcal{I}_{1} \simeq R^{i(\mathcal{L})} \pi_{*} \mathcal{L} \\
\mathcal{W}_{\mathcal{L}} \otimes \mathcal{I}_{-1} \simeq R^{g-i(\mathcal{L})} \pi_{*} \mathcal{L}^{-1}
\end{gathered}
$$

- Prove that $\mathcal{I}_{1}=\mathcal{I}_{-1}=\mathcal{I}$. Then:

$$
\begin{aligned}
\mathcal{W}_{\mathcal{L}} \otimes \mathcal{I} & \simeq R^{g-i(\mathcal{L})} \pi_{*} \mathcal{L}^{-1} \\
& \simeq\left(R^{i(\mathcal{L})} \pi_{*} \mathcal{L}\right)^{\vee} \otimes \underline{\omega}^{-1} \\
& \simeq \mathcal{W}_{\mathcal{L}} \otimes \mathcal{I}^{-1} \otimes \underline{\omega}^{-1}
\end{aligned}
$$

Take H-invariants: $\mathcal{I}^{\otimes 2} \simeq \underline{\omega}^{-1}$.

